April 21, 2020  |  

The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide.

Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome sequence of 269 Mb that was assembled by Illumina short reads, PacBio long reads and high-confidence (Hi-C) data. Gene annotation predicted 25 428 protein-coding genes. In order to decipher the genetic underpinning of diterpenoid biosynthesis, transcriptome data from seedlings elicited with methyl jasmonate were also obtained, which enabled the identification of genes encoding diterpenoid synthases, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenases and UDP-dependent glycosyltransferases potentially involved in diterpenoid lactone biosynthesis. We further carried out functional characterization of pairs of class-I and -II diterpene synthases, revealing the ability to produce diversified labdane-related diterpene scaffolds. In addition, a glycosyltransferase able to catalyze O-linked glucosylation of andrograpanin, yielding the major active product neoandrographolide, was also identified. Thus, our results demonstrate the utility of the combined genomic and transcriptomic data set generated here for the investigation of the production of the bioactive diterpenoid lactone constituents of the important medicinal herb A. paniculata. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.


April 21, 2020  |  

Genome-wide analysis of methyl jasmonate-regulated isoform expression in the medicinal plant Andrographis paniculata

Alternative splicing can increase the complexity of the transcriptome and proteome. The most common mechanism of alternative splicing in plants is intron retention (IR), and the expression levels of IR isoforms can be differentially regulated when facing abiotic stress. The full-length transcriptome of the medicinal plant Andrographis paniculata was sequenced using both Illumina- and SMRT-based RNA-seq and a total of 4846 IR isoforms were identified. The expression levels of 310/296 IR isoforms were up-regulated, and 629/659 IR isoforms were down-regulated at 24?h/48?h after methyl jasmonate (MeJA) treatment, respectively. In the (E,E,E)-geranylgeranyl diphosphate (GGPP) biosynthesis pathway which contributes to the andrographolide biosynthesis, eight genes were alternatively spliced, resulting in a total of 25 isoforms, of which 12 are IR isoforms. After MeJA treatment, four of these IR isoforms showed significant differential expression. RT-PCR and qRT-PCR experiments confirmed the existence of five IR isoforms. This research deepens our understanding of the A. paniculata transcriptome and can assist in the future study of andrographolide biosynthesis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.