Menu
April 21, 2020  |  

Early emergence of mcr-1-positive Enterobacteriaceae in gulls from Spain and Portugal.

We tested extended-spectrum ß-lactamase producing bacteria from wild gulls (Larus spp.) sampled in 2009 for the presence of mcr-1. We report the detection of mcr-1 and describe genome characteristics of four Escherichia coli and one Klebsiella pneumoniae isolate from Spain and Portugal that also exhibited colistin resistance. Results represent the earliest evidence for colistin-resistant bacteria in European wildlife.Published 2019. This article is a U.S. Government work and is in the public domain in the USA.


April 21, 2020  |  

Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli.

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E.?coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


April 21, 2020  |  

Complete Genome and Plasmid Sequences of Seven Isolates of Salmonella enterica subsp. enterica Harboring the mcr-1 Gene Obtained from Food in China.

Seven Salmonella enterica subsp. enterica isolates were identified as carrying the mcr-1 gene, by using a real-time fluorescence quantitative PCR method, from a total of 2,558 isolates which were cultured from various food origins in China between 2011 and 2016. Few complete genomes of Salmonella strains harboring the mcr-1 gene have been reported to date, so we report here the complete genome and plasmid sequences of all of these isolates to provide useful references for understanding the prevalence of foodborne Salmonella enterica subsp. enterica isolates carrying mcr-1.Copyright © 2019 Hu et al.


April 21, 2020  |  

Complete Genome Sequence of a Colistin-Resistant Uropathogenic Escherichia coli Sequence Type 131 fimH22 Strain Harboring mcr-1 on an IncHI2 Plasmid, Isolated in Riyadh, Saudi Arabia.

We report the complete genome sequence of a colistin-resistant strain of uropathogenic Escherichia coli, isolated in January 2013 at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. The isolate (named SA186) was sequence type 131 (ST131) and belonged to serotype O25b-H4 and clade B (fimH22).Copyright © 2019 Alghoribi et al.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

Conjugal Transfer, Whole-Genome Sequencing, and Plasmid Analysis of Four mcr-1-Bearing Isolates from U.S. Patients.

Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n?=?3) or IncN (n?=?1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.


April 21, 2020  |  

Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production.

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ~290 to 300?kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.Copyright © 2019 Roschanski et al.


April 21, 2020  |  

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring blaNDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of blaNDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Emergence of a ST2570 Klebsiella pneumoniae isolate carrying mcr-1 and blaCTX-M-14 recovered from a bloodstream infection in China.

The worldwide emergence of the plasmid-borne colistin resistance mediated by mcr-1 gene not only extended our knowledge on colistin resistance, but also poses a serious threat to clinical and public health [1, 2]. Since its first discovery, mcr-1-carrying Enterobacteriaceae from human, animal, food, and environmental origins have been widely identified, but few mcr-1-positive clinical strains of Klebsiella pneumoniae have been reported so far, especially when associated with community-acquired infections [3, 4]. Here, we report the emergence of a colistin-resistant K. pneumoniae isolate, which belonged to a rare sporadic clone, co-carrying mcr-1 and blaCTX-M-14 genes simultaneous recovered from a community-acquired bloodstream infection in China. Whole-genome sequencing and microbiological analysis were performed to elucidate its antimicrobial resistance mechanisms.


April 21, 2020  |  

Transmission of ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids.

Ciprofloxacin resistance in Salmonella has been increasingly reported due to the emergence and dissemination of multiple Plasmid-Mediated Quinolone Resistance (PMQR) determinants, which are mainly located in non-conjugative plasmids or chromosome. In this study, we aimed to depict the molecular mechanisms underlying the rare phenomenon of horizontal transfer of ciprofloxacin resistance phenotype in Salmonella by conjugation experiments, S1-PFGE and complete plasmid sequencing. Two types of non-conjugative plasmids, namely an IncX1 type carrying a qnrS1 gene, and an IncH1 plasmid carrying the oqxAB-qnrS gene, both ciprofloxacin resistance determinants in Salmonella, were recovered from two Salmonella strains. Importantly, these non-conjugative plasmids could be fused with a novel Incl1 type conjugative helper plasmid, which could target insertion sequence (IS) elements located in the non-conjugative, ciprofloxacin-resistance-encoding plasmid through replicative transcription, eventually forming a hybrid conjugative plasmid transmissible among members of Enterobacteriaceae. Since our data showed that such conjugative helper plasmids are commonly detectable among clinical Salmonella strains, particularly S. Typhimurium, fusion events leading to generation and enhanced dissemination of conjugative ciprofloxacin resistance-encoding plasmids in Salmonella are expected to result in a sharp increase in the incidence of resistance to fluoroquinolone, the key choice for treating life-threatening Salmonella infections, thereby posing a serious public health threat.


April 21, 2020  |  

Salmonella harbouring the mcr-1 gene isolated from food in China between 2012 and 2016.

In November 2015, plasmid-mediated transferable colistin resistance encoded by the mcr-1 gene in Escherichia coli and Klebsiella pneumonia isolates was reported in China with a high rate of in vitro horizontal transfer (10-1–10-3 cells per recipient cell by conjugation).1 At that time, the mcr-1 gene had already been identified in >30 countries across five continents, with novel mcr-2, mcr-3, mcr-4 and mcr-5 genes being reported subsequently.2–5 Recently, a surveillance study was performed on mainland China to investigate the prevalence of the mcr-1 gene in foodborne Salmonella isolates isolated from various food matrices and others collected…


April 21, 2020  |  

Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota.

The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics have revealed that AMP resistance genes originating from phylogenetically distant bacteria have only a limited potential to confer resistance in Escherichia coli, an intrinsically susceptible species. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition of the human microbiota, with implications for disease risks.


April 21, 2020  |  

Novel trimethoprim resistance gene dfrA34 identified in Salmonella Heidelberg in the USA.

Trimethoprim/sulfamethoxazole is a synthetic antibiotic combination recommended for the treatment of complicated non-typhoidal Salmonella infections in humans. Resistance to trimethoprim/sulfamethoxazole is mediated by the acquisition of mobile genes, requiring both a dfr gene (trimethoprim resistance) and a sul gene (sulfamethoxazole resistance) for a clinical resistance phenotype (MIC =4/76?mg/L). In 2017, the CDC investigated a multistate outbreak caused by a Salmonella enterica serotype Heidelberg strain with trimethoprim/sulfamethoxazole resistance, in which sul genes but no known dfr genes were detected.To characterize and describe the molecular mechanism of trimethoprim resistance in a Salmonella Heidelberg outbreak isolate.Illumina sequencing data for one outbreak isolate revealed a 588?bp ORF encoding a putative dfr gene. This gene was cloned into Escherichia coli and resistance to trimethoprim was measured by broth dilution and Etest. Phylogenetic analysis of previously reported dfrA genes was performed using MEGA. Long-read sequencing was conducted to determine the context of the novel dfr gene.The novel dfr gene, named dfrA34, conferred trimethoprim resistance (MIC =32?mg/L) when cloned into E. coli. Based on predicted amino acid sequences, dfrA34 shares less than 50% identity with other known dfrA genes. The dfrA34 gene is located in a class 1 integron in a multiresistance region of an IncC plasmid, adjacent to a sul gene, thus conferring clinical trimethoprim/sulfamethoxazole resistance. Additionally, dfrA34 is associated with ISCR1, enabling easy transmission between other plasmids and bacterial strains.


April 21, 2020  |  

Emergence of an Escherichia coli strain co-harbouring mcr-1 and blaNDM-9 from a urinary tract infection in Taiwan.

Multidrug-resistant bacteria have become a serious threat worldwide. In particular, the coexistence of carbapenemase genes and mcr-1 leaves few available treatment options. Here we report a multidrug-resistant Escherichia coli isolate harbouring both mcr-1 and blaNDM-9 from a patient with a urinary tract infection.Antimicrobial susceptibility and resistance genes of the E. coli isolate were characterised. Furthermore, the assembled genome sequences of mcr-1- and blaNDM-9-carrying plasmids were determined and comparative genetic analysis with closely related plasmids was carried out.Three contigs were assembled comprising the E. coli chromosome and two plasmids harbouring mcr-1 (p5CRE51-MCR-1) and blaNDM-9 (p5CRE51-NDM-9), respectively. Whole-genome sequencing revealed that the two antimicrobial resistance genes are located on individual plasmids.The emergence of coexistence of carbapenemase genes and mcr-1 in Enterobacteriaceae highlights a serious threat to antimicrobial therapy.Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

A new variant of mcr-1 identified from an extended-spectrum ß lactamase-producing Escherichia coli.

Plasmid-mediated colistin resistance gene, mcr-1, has been widely reported almost all over the world. The product of the gene, MCR-1, is one of the members of the phosphoethanolamine transferase enzyme family, which can add phosphoethanolamine to lipid A, thus reducing affinity to polymyxins. Isolates carrying mcr-1 gene are often multidrug resistant (MDR), including co-production of MCR-1 and extended spectrum B lactamases (ESBLs) or carbapenemases, resulting in great clinical concerns.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.