Menu
July 7, 2019  |  

Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.


July 7, 2019  |  

Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data.

Long-read sequencing can overcome the weaknesses of short reads in the assembly of eukaryotic genomes, however, at present additional scaffolding is needed to achieve chromosome-level assemblies. We generated PacBio long-read data of the genomes of three relatives of the model plant Arabidopsis thaliana and assembled all three genomes into only a few hundred contigs. To improve the contiguities of these assemblies, we generated BioNano Genomics optical mapping and Dovetail Genomics chromosome conformation capture data for genome scaffolding. Despite their technical differences, optical mapping and chromosome conformation capture performed similarly and doubled N50 values. After improving both integration methods, assembly contiguity reached chromosome-arm-levels. We rigorously assessed the quality of contigs and scaffolds using Illumina mate-pair libraries and genetic map information. This showed that PacBio assemblies have high sequence accuracy but can contain several misassemblies, which join unlinked regions of the genome. Most, but not all of these mis-joints were removed during the integration of the optical mapping and chromosome conformation capture data. Even though none of the centromeres was fully assembled, the scaffolds revealed large parts of some centromeric regions, even including some of the heterochromatic regions, which are not present in gold standard reference sequences. Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Non hybrid long read consensus using local De Bruijn graph assembly

While second generation sequencing led to a vast increase in sequenced data, the shorter reads which came with it made assembly a much harder task and for some regions impossible with only short read data. This changed again with the advent of third generation long read sequencers. The length of the long reads allows a much better resolution of repetitive regions, their high error rate however is a major challenge. Using the data successfully requires to remove most of the sequencing errors. The first hybrid correction methods used low noise second generation data to correct third generation data, but this approach has issues when it is unclear where to place the short reads due to repeats and also because second generation sequencers fail to sequence some regions which third generation sequencers work on. Later non hybrid methods appeared. We present a new method for non hybrid long read error correction based on De Bruijn graph assembly of short windows of long reads with subsequent combination of these correct windows to corrected long reads. Our experiments show that this method yields a better correction than other state of the art non hybrid correction approaches.


July 7, 2019  |  

High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.

Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.


July 7, 2019  |  

MHC class I diversity in chimpanzees and bonobos.

Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.


July 7, 2019  |  

Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.

Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix.According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria.These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution.


July 7, 2019  |  

Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti.

In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea.© 2016 John Wiley & Sons Ltd.


July 7, 2019  |  

Rapid and consistent evolution of colistin resistance in XDR Pseudomonas aeruginosa during morbidostat culture.

Colistin is a last resort antibiotic commonly used against multidrug-resistant strains of Pseudomonas aeruginosa To investigate the potential for in-situ evolution of resistance against colistin and to map the molecular targets of colistin resistance, we exposed two P. aeruginosa isolates to colistin using a continuous culture device known as morbidostat. As a result, colistin resistance reproducibly increased 10-fold within ten days, and 100-fold within 20 days, along with highly stereotypic, yet strain specific mutation patterns. The majority of mutations hit the pmrAB two component signaling system and genes involved in lipopolysaccharide (LPS) synthesis, including lpxC, pmrE, and migA We tracked the frequencies of all arising mutations by whole genome deep sequencing every 3-4 days to provide a detailed picture of the dynamics of resistance evolution, including competition and displacement among multiple resistant sub-populations. In seven out of 18 cultures, we observed mutations in mutS along with a mutator phenotype that seemed to facilitate resistance evolution. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the family Opitutaceae of the verrucomicrobial subdivision 4.

The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15(T), IG16b(T), and IG31(T), belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as part of their cell walls. Biochemical analysis revealed the presence of DAP not only in these novel strains, but also in Opitutus terrae PB90-1(T), the closest described relative of strains IG15(T), IG16b(T), and IG31(T). Furthermore, we found that nearly all genes necessary for peptidoglycan synthesis are present in genomes of subdivision 4 members, as well as in the complete genome sequence of strain IG16b(T). In addition, we isolated and visualized PG-sacculi for strain IG16b(T). Thus, our results challenge the concept of peptidoglycan-less free-living bacteria. Our polyphasic taxonomy approach places the novel strains in a new genus within the family Opitutaceae, for which the name Lacunisphaera gen. nov. is proposed. Strain designations for IG15(T), IG16b(T) and IG31(T) are Lacunisphaera parvula sp. nov. (=DSM 26814 = LMG 29468), L. limnophila sp. nov. (=DSM 26815 = LMG 29469) and L. anatis sp. nov. (=DSM 103142 = LMG 29578) respectively, with L. limnophila IG16b(T) being the type species of the genus.


July 7, 2019  |  

Genome analysis of Endomicrobium proavitum suggests loss and gain of relevant functions during the evolution of intracellular symbionts.

Bacterial endosymbionts of eukaryotes show progressive genome erosion, but detailed investigations of the evolutionary processes involved in the transition to an intracellular lifestyle are generally hampered by the lack of extant free-living lineages. Here, we characterize the genome of the recently isolated, free-living Endomicrobium proavitum, the second member of the Elusimicrobia phylum brought into pure culture, and compare it to the closely related “Candidatus Endomicrobium trichonymphae” strain Rs-D17, a previously described but uncultured endosymbiont of termite gut flagellates. A reconstruction of the metabolic pathways of Endomicrobium proavitum matched the fermentation products formed in pure culture and underscored its restriction to glucose as the substrate. However, several pathways present in the free-living strain, e.g., for the uptake and activation of glucose and its subsequent fermentation, ammonium assimilation, and outer membrane biogenesis, were absent or disrupted in the endosymbiont, probably lost during the massive genome rearrangements that occurred during symbiogenesis. While the majority of the genes in strain Rs-D17 have orthologs in Endomicrobium proavitum, the endosymbiont also possesses a number of functions that are absent from the free-living strain and may represent adaptations to the intracellular lifestyle. Phylogenetic analysis revealed that the genes encoding glucose 6-phosphate and amino acid transporters, acetaldehyde/alcohol dehydrogenase, and the pathways of glucuronic acid catabolism and thiamine pyrophosphate biosynthesis were either acquired by horizontal gene transfer or may represent ancestral traits that were lost in the free-living strain. The polyphyletic origin of Endomicrobia in different flagellate hosts makes them excellent models for future studies of convergent and parallel evolution during symbiogenesis.IMPORTANCE The isolation of a free-living relative of intracellular symbionts provides the rare opportunity to identify the evolutionary processes that occur in the course of symbiogenesis. Our study documents that the genome of “Candidatus Endomicrobium trichonymphae,” which represents a clade of endosymbionts that have coevolved with termite gut flagellates for more than 40 million years, is not simply a subset of the genes present in Endomicrobium proavitum, a member of the ancestral, free-living lineage. Rather, comparative genomics revealed that the endosymbionts possess several relevant functions that were either prerequisites for colonization of the intracellular habitat or might have served to compensate for genes losses that occurred during genome erosion. Some gene sets found only in the endosymbiont were apparently acquired by horizontal transfer from other gut bacteria, which suggests that the intracellular bacteria of flagellates are not entirely cut off from gene flow. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents.

At deep-sea hydrothermal vents, primary production is carried out by chemolithoautotrophic microorganisms, with the oxidation of reduced sulfur compounds being a major driver for microbial carbon fixation. Dense and highly diverse assemblies of sulfur-oxidizing bacteria (SOB) are observed, yet the principles of niche differentiation between the different SOB across geochemical gradients remain poorly understood. In this study niche differentiation of the key SOB was addressed by extensive sampling of active sulfidic vents at six different hydrothermal venting sites in the Manus Basin, off Papua New Guinea. We subjected 33 diffuse fluid and water column samples and 23 samples from surfaces of chimneys, rocks and fauna to a combined analysis of 16S rRNA gene sequences, metagenomes and real-time in situ measured geochemical parameters. We found Sulfurovum Epsilonproteobacteria mainly attached to surfaces exposed to diffuse venting, while the SUP05-clade dominated the bacterioplankton in highly diluted mixtures of vent fluids and seawater. We propose that the high diversity within Sulfurimonas- and Sulfurovum-related Epsilonproteobacteria observed in this study derives from the high variation of environmental parameters such as oxygen and sulfide concentrations across small spatial and temporal scales.


July 7, 2019  |  

Recombination of virulence genes in divergent Acidovorax avenae strains that infect a common host.

Bacterial etiolation and decline (BED), caused by Acidovorax avenae, is an emerging disease of creeping bentgrass on golf courses in the United States. We performed the first comprehensive analysis of A. avenae on a nationwide collection of turfgrass- and maize-pathogenic A. avenae. Surprisingly, our results reveal that the turfgrass-pathogenic A. avenae in North America are not only highly divergent but also belong to two distinct phylogroups. Both phylogroups specifically infect turfgrass but are more closely related to maize pathogens than to each other. This suggests that, although the disease is only recently reported, it has likely been infecting turfgrass for a long time. To identify a genetic basis for the host specificity, we searched for genes closely related among turfgrass strains but distantly related to their homologs from maize strains. We found a cluster of 11 such genes generated by three ancient recombination events within the type III secretion system (T3SS) pathogenicity island. Ever since the recombination, the cluster has been conserved by strong purifying selection, hinting at its selective importance. Together our analyses suggest that BED is an ancient disease that may owe its host specificity to a highly conserved cluster of 11 T3SS genes.


July 7, 2019  |  

Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition.

Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of plant-microbiota interactions, we studied the root-associated fungal microbiome of Arabis alpina (Brassicaceae) with the hypothesis that some of its components can promote plant P acquisition. Using amplicon sequencing of the fungal internal transcribed spacer 2, we studied the root and rhizosphere fungal communities of A. alpina growing under natural and controlled conditions including low-P soils and identified a set of 15 fungal taxa consistently detected in its roots. This cohort included a Helotiales taxon exhibiting high abundance in roots of wild A. alpina growing in an extremely P-limited soil. Consequently, we isolated and subsequently reintroduced a specimen from this taxon into its native P-poor soil in which it improved plant growth and P uptake. The fungus exhibited mycorrhiza-like traits including colonization of the root endosphere and P transfer to the plant. Genome analysis revealed a link between its endophytic lifestyle and the expansion of its repertoire of carbohydrate-active enzymes. We report the discovery of a plant-fungus interaction facilitating the growth of a nonmycorrhizal plant under native P-limited conditions, thus uncovering a previously underestimated role of root fungal microbiota in P cycling.


July 7, 2019  |  

Recent expansion and adaptive evolution of the carcinoembryonic antigen family in bats of the Yangochiroptera subgroup.

Expansions of gene families are predictive for ongoing genetic adaptation to environmental cues. We describe such an expansion of the carcinoembryonic antigen (CEA) gene family in certain bat families. Members of the CEA family in humans and mice are exploited as cellular receptors by a number of pathogens, possibly due to their function in immunity and reproduction. The CEA family is composed of CEA-related cell adhesion molecules (CEACAMs) and secreted pregnancy-specific glycoproteins (PSGs). PSGs are almost exclusively expressed by trophoblast cells at the maternal-fetal interface. The reason why PSGs exist only in a minority of mammals is still unknown.Analysis of the CEA gene family in bats revealed that in certain bat families, belonging to the subgroup Yangochiroptera but not the Yinpterochiroptera subgroup an expansion of the CEA gene family took place, resulting in approximately one hundred CEA family genes in some species of the Vespertilionidae. The majority of these genes encode secreted PSG-like proteins (further referred to as PSG). Remarkably, we found strong evidence that the ligand-binding domain (IgV-like domain) of PSG is under diversifying positive selection indicating that bat PSGs may interact with structurally highly variable ligands. Such ligands might represent bacterial or viral pathogen adhesins. We have identified two distinct clusters of PSGs in three Myotis species. The two PSG cluster differ in the amino acids under positive selection. One cluster was only expanded in members of the Vespertilionidae while the other was found to be expanded in addition in members of the Miniopteridae and Mormoopidae. Thus one round of PSG expansion may have occurred in an ancestry of all three families and a second only in Vespertilionidae. Although maternal ligands of PSGs may exist selective challenges by two distinct pathogens seem to be likely responsible for the expansion of PSGs in Vespertilionidae.The rapid expansion of PSGs in certain bat species together with selection for diversification suggest that bat PSGs could be part of a pathogen defense system by serving as decoy receptors and/or regulators of feto-maternal interactions.


July 7, 2019  |  

Complete genome sequence of the fruiting myxobacterium Myxococcus macrosporus strain DSM 14697, generated by PacBio sequencing.

Members of the Myxococcales order initiate a developmental program in response to starvation that culminates in formation of spore-filled fruiting bodies. To investigate the genetic basis for fruiting body formation, we present the complete 8.9-Mb genome sequence of Myxococcus macrosporus strain DSM 14697, generated using the PacBio sequencing platform. Copyright © 2017 Treuner-Lange et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.