X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Comparison of phasing strategies for whole human genomes.

Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not ‘phase’ the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available ‘Genome-In-A-Bottle’ (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays…

Read More »

Sunday, September 22, 2019

Discovery of gorilla MHC-C expressing C1 ligand for KIR.

In comparison to humans and chimpanzees, gorillas show low diversity at MHC class I genes (Gogo), as reflected by an overall reduced level of allelic variation as well as the absence of a functionally important sequence motif that interacts with killer cell immunoglobulin-like receptors (KIR). Here, we use recently generated large-scale genomic sequence data for a reassessment of allelic diversity at Gogo-C, the gorilla orthologue of HLA-C. Through the combination of long-range amplifications and long-read sequencing technology, we obtained, among the 35 gorillas reanalyzed, three novel full-length genomic sequences including a coding region sequence that has not been previously described.…

Read More »

Sunday, September 22, 2019

Investigating the central metabolism of Clostridium thermosuccinogenes.

Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced, and the genome of the type strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine cofactor specificity. The genes were identified for the pathways to all fermentation products, as well as for the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. Notably, a candidate transaldolase was lacking, and transcriptomics during growth on glucose versus that…

Read More »

Sunday, September 22, 2019

A graph-based approach to diploid genome assembly.

Constructing high-quality haplotype-resolved de novo assemblies of diploid genomes is important for revealing the full extent of structural variation and its role in health and disease. Current assembly approaches often collapse the two sequences into one haploid consensus sequence and, therefore, fail to capture the diploid nature of the organism under study. Thus, building an assembler capable of producing accurate and complete diploid assemblies, while being resource-efficient with respect to sequencing costs, is a key challenge to be addressed by the bioinformatics community.We present a novel graph-based approach to diploid assembly, which combines accurate Illumina data and long-read Pacific Biosciences…

Read More »

Sunday, September 22, 2019

A rapid method for directed gene knockout for screening in G0 zebrafish.

Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes…

Read More »

Sunday, September 22, 2019

The Chara genome: Secondary complexity and implications for plant terrestrialization.

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular…

Read More »

Sunday, September 22, 2019

Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium Synechocystis sp. PCC 6803.

DNA methylation in bacteria is important for defense against foreign DNA, but is also involved in DNA repair, replication, chromosome partitioning, and regulatory processes. Thus, characterization of the underlying DNA methyltransferases in genetically tractable bacteria is of paramount importance. Here, we characterized the methylome and orphan methyltransferases in the model cyanobacterium Synechocystis sp. PCC 6803. Single molecule real-time (SMRT) sequencing revealed four DNA methylation recognition sequences in addition to the previously known motif m5CGATCG, which is recognized by M.Ssp6803I. For three of the new recognition sequences, we identified the responsible methyltransferases. M.Ssp6803II, encoded by the sll0729 gene, modifies GGm4CC, M.Ssp6803III,…

Read More »

Sunday, September 22, 2019

The landscape of repetitive elements in the refined genome of chilli anthracnose fungus Colletotrichum truncatum.

The ascomycete fungus Colletotrichum truncatum is a major phytopathogen with a broad host range which causes anthracnose disease of chilli. The genome sequencing of this fungus led to the discovery of functional categories of genes that may play important roles in fungal pathogenicity. However, the presence of gaps in C. truncatum draft assembly prevented the accurate prediction of repetitive elements, which are the key players to determine the genome architecture and drive evolution and host adaptation. We re-sequenced its genome using single-molecule real-time (SMRT) sequencing technology to obtain a refined assembly with lesser and smaller gaps and ambiguities. This enabled…

Read More »

Sunday, September 22, 2019

Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test.

Short insertions, deletions (INDELs) and larger structural variants have been increasingly employed in genetic association studies, but few improvements over SNP-based association have been reported. In order to understand why this might be the case, we analysed two publicly available datasets and observed that 63% of INDELs called in A. thaliana and 64% in D. melanogaster populations are misrepresented as multiple alleles with different functional annotations, i.e. where the same underlying variant is represented by inconsistent alignments leading to different variant calls. To address this issue, we have developed the software Irisas to reclassify and re-annotate these variants, which we…

Read More »

Sunday, September 22, 2019

The genomic basis of color pattern polymorphism in the Harlequin ladybird.

Many animal species comprise discrete phenotypic forms. A common example in natural populations of insects is the occurrence of different color patterns, which has motivated a rich body of ecological and genetic research [1-6]. The occurrence of dark, i.e., melanic, forms displaying discrete color patterns is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and red patches on adult elytra varies wildly within species, forming strikingly different complex color patterns [7, 8]. In the harlequin ladybird, Harmonia axyridis, more than 200 distinct color forms have been described,…

Read More »

Sunday, September 22, 2019

A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content

Cannabis has been cultivated for millennia with distinct cultivars providing either fiber and grain or tetrahydrocannabinol. Recent demand for cannabidiol rather than tetrahydrocannabinol has favored the breeding of admixed cultivars with extremely high cannabidiol content. Despite several draft Cannabis genomes, the genomic structure of cannabinoid synthase loci has remained elusive. A genetic map derived from a tetrahydrocannabinol/cannabidiol segregating population and a complete chromosome assembly from a high-cannabidiol cultivar together resolve the linkage of cannabidiolic and tetrahydrocannabinolic acid synthase gene clusters which are associated with transposable elements. High-cannabidiol cultivars appear to have been generated by integrating hemp-type cannabidiolic acid synthase gene…

Read More »

Sunday, September 22, 2019

pYR4 from a Norwegian isolate of Yersinia ruckeri is a putative virulence plasmid encoding both a type IV pilus and a type IV secretion system

Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others…

Read More »

Sunday, September 22, 2019

Alpha- and beta-mannan utilization by marine Bacteroidetes.

Marine microscopic algae carry out about half of the global carbon dioxide fixation into organic matter. They provide organic substrates for marine microbes such as members of the Bacteroidetes that degrade algal polysaccharides using carbohydrate-active enzymes (CAZymes). In Bacteroidetes genomes CAZyme encoding genes are mostly grouped in distinct regions termed polysaccharide utilization loci (PULs). While some studies have shown involvement of PULs in the degradation of algal polysaccharides, the specific substrates are for the most part still unknown. We investigated four marine Bacteroidetes isolated from the southern North Sea that harbour putative mannan-specific PULs. These PULs are similarly organized as…

Read More »

Sunday, September 22, 2019

Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain.

Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR.Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent…

Read More »

1 2 3 4 5 7

Subscribe for blog updates:

Archives