Menu
September 22, 2019  |  

MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs.

There are numerous computational tools for taxonomic or functional analysis of microbiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read sequencing technologies continue to improve and produce increasing numbers of longer reads (of varying lengths in the range of 10k-1M bps, say), but of low quality. There is an increasing interest in using long reads in microbiome sequencing, and there is a need to adapt short read tools to long read datasets.We describe a new LCA-based algorithm for taxonomic binning, and an interval-tree based algorithm for functional binning, that are explicitly designed for long reads and assembled contigs. We provide a new interactive tool for investigating the alignment of long reads against reference sequences. For taxonomic and functional binning, we propose to use LAST to compare long reads against the NCBI-nr protein reference database so as to obtain frame-shift aware alignments, and then to process the results using our new methods.All presented methods are implemented in the open source edition of MEGAN, and we refer to this new extension as MEGAN-LR (MEGAN long read). We evaluate the LAST+MEGAN-LR approach in a simulation study, and on a number of mock community datasets consisting of Nanopore reads, PacBio reads and assembled PacBio reads. We also illustrate the practical application on a Nanopore dataset that we sequenced from an anammox bio-rector community.This article was reviewed by Nicola Segata together with Moreno Zolfo, Pete James Lockhart and Serghei Mangul.This work extends the applicability of the widely-used metagenomic analysis software MEGAN to long reads. Our study suggests that the presented LAST+MEGAN-LR pipeline is sufficiently fast and accurate.


September 22, 2019  |  

First insights into the nature and evolution of antisense transcription in nematodes.

The development of multicellular organisms is coordinated by various gene regulatory mechanisms that ensure correct spatio-temporal patterns of gene expression. Recently, the role of antisense transcription in gene regulation has moved into focus of research. To characterize genome-wide patterns of antisense transcription and to study their evolutionary conservation, we sequenced a strand-specific RNA-seq library of the nematode Pristionchus pacificus.We identified 1112 antisense configurations of which the largest group represents 465 antisense transcripts (ASTs) that are fully embedded in introns of their host genes. We find that most ASTs show homology to protein-coding genes and are overrepresented in proteomic data. Together with the finding, that expression levels of ASTs and host genes are uncorrelated, this indicates that most ASTs in P. pacificus do not represent non-coding RNAs and do not exhibit regulatory functions on their host genes. We studied the evolution of antisense gene pairs across 20 nematode genomes, showing that the majority of pairs is lineage-specific and even the highly conserved vps-4, ddx-27, and sel-2 loci show abundant structural changes including duplications, deletions, intron gains and loss of antisense transcription. In contrast, host genes in general, are remarkably conserved and encode exceptionally long introns leading to unusually large blocks of conserved synteny.Our study has shown that in P. pacificus antisense transcription as such does not define non-coding RNAs but is rather a feature of highly conserved genes with long introns. We hypothesize that the presence of regulatory elements imposes evolutionary constraint on the intron length, but simultaneously, their large size makes them a likely target for translocation of genomic elements including protein-coding genes that eventually end up as ASTs.


September 22, 2019  |  

Microsatellites from Fosterella christophii (Bromeliaceae) by de novo transcriptome sequencing on the Pacific Biosciences RS platform.

Microsatellite markers were developed in Fosterella christophii (Bromeliaceae) to investigate the genetic diversity and population structure within the F. micrantha group, comprising F. christophii, F. micrantha, and F. villosula.Full-length cDNAs were isolated from F. christophii and sequenced on a Pacific Biosciences RS platform. A total of 1590 high-quality consensus isoforms were assembled into 971 unigenes containing 421 perfect microsatellites. Thirty primer sets were designed, of which 13 revealed a high level of polymorphism in three populations of F. christophii, with four to nine alleles per locus. Each of these 13 loci cross-amplified in the closely related species F. micrantha and F. villosula, with one to six and one to 11 alleles per locus, respectively.The new markers are promising tools to study the population genetics of F. christophii and to discover species boundaries within the F. micrantha group.


September 22, 2019  |  

The discovered chimeric protein plays the cohesive role to maintain scallop byssal root structural integrity.

Adhesion is essential for many marine sessile organisms. Unraveling the compositions and assembly of marine bioadheisves is the fundamental to understand their physiological roles. Despite the remarkable diversity of animal bioadhesion, our understanding of this biological process remains limited to only a few animal lineages, leaving the majority of lineages remain enigmatic. Our previous study demonstrated that scallop byssus had distinct protein composition and unusual assembly mechanism apart from mussels. Here a novel protein (Sbp9) was discovered from the key part of the byssus (byssal root), which contains two Calcium Binding Domain (CBD) and 49 tandem Epidermal Growth Factor-Like (EGFL) domain repeats. Modular architecture of Sbp9 represents a novel chimeric gene family resulting from a gene fusion event through the acquisition of CBD2 domain by tenascin like (TNL) gene from Na+/Ca2+ exchanger 1 (NCX1) gene. Finally, free thiols are present in Sbp9 and the results of a rescue assay indicated that Sbp9 likely plays the cohesive role for byssal root integrity. This study not only aids our understanding of byssus assembly but will also inspire biomimetic material design.


September 22, 2019  |  

Complete genome sequence of Endomicrobium proavitum, a free-living relative of the intracellular symbionts of termite gut flagellates (phylum Elusimicrobia).

We sequenced the complete genome of Endomicrobium proavitum strain Rsa215, the first isolate of the class Endomicrobia (phylum Elusimicrobia). It is the closest free-living relative of the endosymbionts of termite gut flagellates and thereby provides an excellent model for studying the evolutionary processes during the establishment of an intracellular symbiosis. Copyright © 2015 Zheng and Brune.


September 22, 2019  |  

Novel molecules lncRNAs, tRFs and circRNAs deciphered from next-generation sequencing/RNA sequencing: computational databases and tools.

Powerful next-generation sequencing (NGS) technologies, more specifically RNA sequencing (RNA-seq), have been pivotal toward the detection and analysis and hypotheses generation of novel biomolecules, long noncoding RNAs (lncRNAs), tRNA-derived fragments (tRFs) and circular RNAs (circRNAs). Experimental validation of the occurrence of these biomolecules inside the cell has been reported. Their differential expression and functionally important role in several cancers types as well as other diseases such as Alzheimer’s and cardiovascular diseases have garnered interest toward further studies in this research arena. In this review, starting from a brief relevant introduction to NGS and RNA-seq and the expression and role of lncRNAs, tRFs and circRNAs in cancer, we have comprehensively analyzed the current landscape of databases developed and computational software used for analyses and visualization for this emerging and highly interesting field of these novel biomolecules. Our review will help the end users and research investigators gain information on the existing databases and tools as well as an understanding of the specific features which these offer. This will be useful for the researchers in their proper usage thereby guiding them toward novel hypotheses generation and saving time and costs involved in extensive experimental processes in these three different novel functional RNAs.© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.


September 22, 2019  |  

Splicing of nascent RNA coincides with intron exit from RNA Polymerase II.

Protein-coding genes in eukaryotes are transcribed by RNA polymerase II (Pol II) and introns are removed from pre-mRNA by the spliceosome. Understanding the time lag between Pol II progression and splicing could provide mechanistic insights into the regulation of gene expression. Here, we present two single-molecule nascent RNA sequencing methods that directly determine the progress of splicing catalysis as a function of Pol II position. Endogenous genes were analyzed on a global scale in budding yeast. We show that splicing is 50% complete when Pol II is only 45 nt downstream of introns, with the first spliced products observed as introns emerge from Pol II. Perturbations that slow the rate of spliceosome assembly or speed up the rate of transcription caused splicing delays, showing that regulation of both processes determines in vivo splicing profiles. We propose that matched rates streamline the gene expression pathway, while allowing regulation through kinetic competition. Copyright © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Stalking a lethal superbug by whole-genome sequencing and phylogenetics: Influence on unraveling a major hospital outbreak of carbapenem-resistant Klebsiella pneumoniae.

From July 2010-April 2013, Leipzig University Hospital experienced the largest outbreak of a Klebsiella pneumoniae carbapenemase 2 (KPC-2)-producing Klebsiella pneumoniae (KPC-2-Kp) strain observed in Germany to date. After termination of the outbreak, we aimed to reconstruct transmission pathways by phylogenetics based on whole-genome sequencing (WGS).One hundred seventeen KPC-2-Kp isolates from 89 outbreak patients, 5 environmental KPC-2-Kp isolates, and 24 K pneumoniae strains not linked to the outbreak underwent WGS. Phylogenetic analysis was performed blinded to clinical data and based on the genomic reads.A patient from Greece was confirmed as the source of the outbreak. Transmission pathways for 11 out of 89 patients (12.4%) were plausibly explained by descriptive epidemiology, applying strict definitions. Five of these and an additional 15 (ie, 20 out of 89 patients [22.5%]) were confirmed by phylogenetics. The rate of phylogenetically confirmed transmissions increased significantly from 8 out of 66 (12.1% for the time period before) to 12 out of 23 patients (52.2% for the time period after; P?<.001) after implementation of systematic screening for KPC-2-Kp (33,623 screening investigations within 11 months). Using descriptive epidemiology, systematic screening showed no significant effect (7 out of 66 [10.6%] vs 4 out of 23 [17.4%] patients; P?=?.465). The phylogenetic analysis supported the assumption that a contaminated positioning pillow served as a reservoir for the persistence of KPC-2-Kp.Effective phylogenetic identification of transmissions requires systematic microbiologic screening. Extensive screening and phylogenetic analysis based on WGS should be started as soon as possible in a bacterial outbreak situation. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Androgen and estrogen sensitivity of bird song: a comparative view on gene regulatory levels.

Singing of songbirds is sensitive to testosterone and its androgenic and estrogenic metabolites in a species-specific way. The hormonal effects on song pattern are likely mediated by androgen receptors (AR) and estrogen receptor alpha (ERa), ligand activated transcription factors that are expressed in neurons of various areas of the songbirds’ vocal control circuit. The distribution of AR in this circuit is rather similar between species while that of ERa is species variant and concerns a key vocal control area, the HVC (proper name). We discuss the regulation of the expression of the cognate AR and ERa and putative splice variants. In particular, we suggest that transcription factor binding sites in the promoter of these receptors differ between bird species. Further, we suggest that AR- and ERa-dependent gene regulation in vocal areas differs between species due to species-specific DNA binding sites of putative target genes that are required for the transcriptional activity of the receptors. We suggest that species differences in the distribution of AR and ERa in vocal areas and in the genomic sensitivity to these receptors contribute to species-specific hormonal regulation of the song.


September 22, 2019  |  

The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a “Y. ruckeri invasin-like molecule”, (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen.

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone.

The N2-fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru. The new species belongs to the genus Sagittula (Rhodobacteraceae, Alphaproteobacteria) and its capability to fix N2was confirmed in laboratory experiments. Genome sequencing revealed that it is a strict heterotroph with a high versatility in substrate utilization and energy acquisition mechanisms. Pathways for sulfide oxidation and nitrite reduction to nitrous oxide are encoded in the genome and might explain the presence throughout the Peruvian OMZ. The genome further indicates that this novel organism could be in direct interaction with other microbes or particles. NanoSIMS analyses were used to compare the metabolic potential of S. castanea with single-cell activity in situ; however, N2fixation by this diazotroph could not be detected at the isolation site. While the biogeochemical impact of S. castanea is yet to be resolved, its abundance and widespread distribution suggests that its potential to contribute to the marine N input could be significant at a larger geographical scale.© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands.

The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53?Mb chromosome and one plasmid, 175?kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum-iron and vanadium-iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands.© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019  |  

Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species.

Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n~1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.


September 22, 2019  |  

The sequence of the salamander.

The genome of the aquatic axolotl salamander, a native of Mexico’s lakes, has yielded some surprises, and the technique used could point the way to analysis of other organisms that have complex genomes with large numbers of sequence repeats, such as the lungfish and many species of plants.


September 22, 2019  |  

Comparative genomics of smut pathogens: Insights from orphans and positively selected genes into host specialization.

Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice), Echinochloa colona (a wild grass), and Persicaria sp. (a wild dicot plant). We assembled two new genomes: Ustilago hordei (strain Uhor01) isolated from oats and U. tritici (strain CBS 119.19) isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.