fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members…

Read More »

Tuesday, June 1, 2021

HLA variant identification techniques

The Human Leukocyte Antigen (HLA) genes located on chromosome 6 are responsible for regulating immune function via antigen presentation and are one of the determining factors for stem cell and organ transplantation compatibility. Additionally various alleles within this region have been implicated in autoimmune disorders, cancer, vaccine response and both non-infectious and infectious disease risk. The HLA region is highly variable; containing repetitive regions; and co-dominantly expressed genes. This complicates short read mapping and means that assessing the effect of variation within a gene requires full phase information to resolve haplotypes.One solution to the problem of HLA identification is the…

Read More »

Tuesday, June 1, 2021

Genome in a Bottle: You’ve sequenced. How well did you do?

Purpose: Clinical laboratories, research laboratories and technology developers all need DNA samples with reliably known genotypes in order to help validate and improve their methods. The Genome in a Bottle Consortium (genomeinabottle.org) has been developing Reference Materials with high-accuracy whole genome sequences to support these efforts.Methodology: Our pilot reference material is based on Coriell sample NA12878 and was released in May 2015 as NIST RM 8398 (tinyurl.com/giabpilot). To minimize bias and improve accuracy, 11 whole-genome and 3 exome data sets produced using 5 different technologies were integrated using a systematic arbitration method [1]. The Genome in a Bottle Analysis Group…

Read More »

Tuesday, June 1, 2021

Highly accurate read mapping of third generation sequencing reads for improved structural variation analysis

Characterizing genomic structural variations (SV) is vital for understanding how genomes evolve. Furthermore, SVs are known for playing a role in a wide range of diseases including cancer, autism, and schizophrenia. Nevertheless, due to their complexity they remain harder to detect and less understood than single nucleotide variations. Recently, third-generation sequencing has proven to be an invaluable tool for detecting SVs. The markedly higher read length not only allows single reads to span a SV, it also enables reliable mapping to repetitive regions of the genome. These regions often contain SVs and are inaccessible to short-read mapping. However, current sequencing…

Read More »

Tuesday, June 1, 2021

Building a platinum human genome assembly from single haplotype human genomes generated from long molecule sequencing

The human reference sequence has provided a foundation for studies of genome structure, human variation, evolutionary biology, and disease. At the time the reference was originally completed there were some loci recalcitrant to closure; however, the degree to which structural variation and diversity affected our ability to produce a representative genome sequence at these loci was still unknown. Many of these regions in the genome are associated with large, repetitive sequences and exhibit complex allelic diversity such producing a single, haploid representation is not possible. To overcome this challenge, we have sequenced DNA from two hydatidiform moles (CHM1 and CHM13),…

Read More »

Tuesday, June 1, 2021

Detection of structural variants using third generation sequencing

Structural Variants (SVs), which include deletions, insertions, duplications, inversions and chromosomal rearrangements, have been shown to effect organism phenotypes, including changing gene expression, increasing disease risk, and playing an important role in cancer development. Still it remains challenging to detect all types of SVs from high throughput sequencing data and it is even harder to detect more complex SVs such as a duplication nested within an inversion. To overcome these challenges we developed algorithms for SV analysis using longer third generation sequencing reads. The increased read lengths allow us to span more complex SVs and accurately assess SVs in repetitive…

Read More »

Tuesday, June 1, 2021

Comprehensive genome and transcriptome structural analysis of a breast cancer cell line using PacBio long read sequencing

Genomic instability is one of the hallmarks of cancer, leading to widespread copy number variations, chromosomal fusions, and other structural variations. The breast cancer cell line SK-BR-3 is an important model for HER2+ breast cancers, which are among the most aggressive forms of the disease and affect one in five cases. Through short read sequencing, copy number arrays, and other technologies, the genome of SK-BR-3 is known to be highly rearranged with many copy number variations, including an approximately twenty-fold amplification of the HER2 oncogene. However, these technologies cannot precisely characterize the nature and context of the identified genomic events…

Read More »

Tuesday, June 1, 2021

The resurgence of reference quality genome

Several new 3rd generation long-range DNA sequencing and mapping technologies have recently become available that are starting to create a resurgence in genome sequence quality. Unlike their 2nd generation, shortread counterparts that can resolve a few hundred or a few thousand basepairs, the new technologies can routinely sequence 10,000 bp reads or map across 100,000 bp molecules. The substantially greater lengths are being used to enhance a number of important problems in genomics and medicine, including de novo genome assembly, structural variation detection, and haplotype phasing. Here we discuss the capabilities of the latest technologies, and show how they will…

Read More »

Tuesday, June 1, 2021

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate…

Read More »

Tuesday, June 1, 2021

Cogent: Reconstructing the coding genome from full-length transcriptome sequences

For highly complex and large genomes, a well-annotated genome may be computationally challenging and costly, yet the study of alternative splicing events and gene annotations usually rely on the existence of a genome. Long-read sequencing technology provides new opportunities to sequence full-length cDNAs, avoiding computational challenges that short read transcript assembly brings. The use of single molecule, real-time sequencing from Pacific Biosciences to sequence transcriptomes (the Iso-SeqTM method), which produces de novo, high-quality, full-length transcripts, has revealed an astonishing amount of alternative splicing in eukaryotic species. With the Iso-Seq method, it is now possible to reconstruct the transcribed regions of…

Read More »

Tuesday, June 1, 2021

An update on goat genomics

Goats are specialized in dairy, meat and fiber production, being adapted to a wide range of environmental conditions and having a large economic impact in developing countries. In the last years, there have been dramatic advances in the knowledge of the structure and diversity of the goat genome/transcriptome and in the development of genomic tools, rapidly narrowing the gap between goat and related species such as cattle and sheep. Major advances are: 1) publication of a de novo goat genome reference sequence; 2) Development of whole genome high density RH maps, and; 3) Design of a commercial 50K SNP array.…

Read More »

1 2 3 4 5 30

Subscribe for blog updates:

Archives