Menu
September 22, 2019  |  

Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae.

The bacterial community of the small intestine is a key factor that has strong influence on the health of gastrointestinal tract (GIT) in mammals during and shortly after weaning. The aim of this study was to analyze the effects of the diets of supplemented with epidermal growth factor (EGF)-expressed Saccharomyces cerevisiae (S. cerevisiae) on the duodenal microbiotas of weaned piglets.Revealed in this study, at day 7, 14 and 21, respectively, the compositional sequencing analysis of the 16S rRNA in the duodenum had no marked difference in microbial diversity from the phylum to species levels between the INVSc1(EV) and other recombinant strains encompassing INVSc1-EE(+), INVSc1-TE(-), and INVSc1-IE(+). Furthermore, the populations of potentially enterobacteria (e.g., Clostridium and Prevotella) and probiotic (e.g., Lactobacilli and Lactococcus) also remained unchanged among recombinant S. cerevisiae groups (P?>?0.05). However, the compositional sequencing analysis of the 16S rRNA in the duodenum revealed significant difference in microbial diversity from phylum to species levels between the control group and recombinant S. cerevisiae groups. In terms of the control group (the lack of S. cerevisiae), these data confirmed that dietary exogenous S. cerevisiae had the feasibility to be used as a supplement for enhancing potentially probiotic (e.g., Lactobacilli and Lactococcus) (P?


September 22, 2019  |  

Bacterial microbiota and metabolic character of traditional sour cream and butter in Buryatia, Russia.

Traditional sour cream and butter are widely popular fermented dairy products in Russia for their flavor and nutrition, and contain rich microbial biodiversity, particularly in terms of lactic acid bacteria (LAB). However, few studies have described the microbial communities and metabolic character of traditional sour cream and butter. The objective of this study was to determine the bacterial microbiota and metabolic character of eight samples collected from herdsmen in Buryatia, Russia. Using single-molecule real-time (SMRT) sequencing techniques, we identified a total of 294 species and/or subspecies in 169 bacterial genera, belonging to 14 phyla. The dominant phylum was Firmicutes (81.47%) and the dominant genus was Lactococcus (59.28%). There were differences between the bacterial compositions of the sour cream and butter samples. The relative abundances of Lactococcus lactis, Lactococcus raffinolactis, and Acetobacter cibinongensis were significantly higher in sour cream than in butter, and the abundance of Streptococcusthermophilus was significantly lower in sour cream than in butter. Using a pure culture method, 48 strains were isolated and identified to represent seven genera and 15 species and/or subspecies. Among these isolates, Lactococccus lactis subsp. lactis (22.50%) was the dominant LAB species. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry at elevated energy was used in combination with statistical methods to detect metabolite differences between traditional sour cream and butter. A total of 27,822 metabolites were detected in all samples, and Lys-Lys, isohexanal, palmitic acid, Leu-Val, and 2′-deoxycytidine were the most dominant metabolites found in all samples. In addition, 27 significantly different metabolites were detected between the sour cream and butter samples, including short peptides, organic acids, and amino acids. Based on correlation analyses between the most prevalent bacterial species and the main metabolites in sour cream, we conclude that there may be a connection between the dominant LAB species and these metabolites. This study combined omics techniques to analyze the bacterial diversity and metabolic character of traditional sour cream and butter, and we hope that our findings will enrich species resource libraries and provide valuable resources for further research on dairy product flavor.


September 22, 2019  |  

Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material.

To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in glycoside hydrolases (33.3%) and glycosyl transferases (27.1%). The virulence factors are mainly associated with biosynthesis of capsule and polysaccharide capsule. This work indicates that among the biodrying microorganisms, B. thermoamylovorans has good potential for degrading recalcitrant and readily degradable components, thus being a potential microbial agent used to improve biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Biosynthetic Baeyer-Villiger chemistry enables access to two anthracene scaffolds from a single gene cluster in Deep-Sea-derived Streptomyces olivaceus SCSIO T05.

Four known compounds, rishirilide B (1), rishirilide C (2), lupinacidin A (3), and galvaquinone B (4), representing two anthracene scaffolds typical of aromatic polyketides, were isolated from a culture of the deep-sea-derived Streptomyces olivaceus SCSIO T05. From the S. olivaceus producer was cloned and sequenced the rsd biosynthetic gene cluster (BGC) that drives rishirilide biosynthesis. The structural gene rsdK2 inactivation and heterologous expression of the rsd BGC confirmed the single rsd BGC encodes construction of 1-4 and, thus, accounts for two anthracene scaffolds. Precursor incubation experiments with 13C-labeled acetate revealed that a Baeyer-Villiger-type rearrangement plays a central role in construction of 1-4. Two luciferase monooxygenase components, along with a reductase component, are presumably involved in the Baeyer-Villiger-type rearrangement reaction enabling access to the two anthracene scaffold variants. Engineering of the rsd BGC unveiled three SARP family transcriptional regulators, enhancing anthracene production. Inactivation of rsdR4, a MarR family transcriptional regulator, failed to impact production of 1-4, although production of 3 was slightly improved; most importantly rsdR4 inactivation led to the new adduct 6 in high titer. Notably, inactivation of rsdH, a putative amidohydrolase, substantially improved the overall titers of 1-4 by more than 4-fold.


September 22, 2019  |  

Characterization of the antimonite- and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal.

Arsenic (As) and antinomy (Sb) usually coexist in natural environments where both of them pollute soils and water. Microorganisms that oxidize arsenite [As(III)] and tolerate Sb have great potential in As and Sb bioremediation, In this study, a Gram-negative bacterial strain, Bosea sp. AS-1, was isolated from a mine slag sample collected in Xikuangshan Sb mine in China. AS-1 could tolerate 120?mM of As(III) and 50?mM of antimonite [Sb(III)]. It could also oxidize 2?mM of As(III) or Sb(III) completely under heterotrophic and aerobic conditions. Interestingly, strain AS-1 preferred to oxidize As(III) with yeast extract as the carbon source, whereas Sb(III) oxidation was favored with lactate in the medium. Genomic analysis of AS-1 confirmed the presence of several gene islands for As resistance and oxidation. Notably, a system of AS-1 and goethite was found to be able to remove 99% of the As with the initial concentration of 500?µg/L As(III) and 500?µg/L Sb(III), which suggests the potential of this approach for As removal in environments especially with the presence of high Sb. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Antimicrobial resistance profile of mcr-1 positive clinical isolates of Escherichia coli in China From 2013 to 2016.

Multidrug-resistant (MDR) Escherichia coli poses a great challenge for public health in recent decades. Polymyxins have been reconsidered as a valuable therapeutic option for the treatment of infections caused by MDR E. coli. A plasmid-encoded colistin resistance gene mcr-1 encoding phosphoethanolamine transferase has been recently described in Enterobacteriaceae. In this study, a total of 123 E. coli isolates obtained from patients with diarrheal diseases in China were used for the genetic analysis of colistin resistance in clinical isolates. Antimicrobial resistance profile of polymyxin B (PB) and 11 commonly used antimicrobial agents were determined. Among the 123 E. coli isolates, 9 isolates (7.3%) were resistant to PB and PCR screening showed that seven (5.7%) isolates carried the mcr-1 gene. A hybrid sequencing analysis using single-molecule, real-time (SMRT) sequencing and Illumina sequencing was then performed to resolve the genomes of the seven mcr-1 positive isolates. These seven isolates harbored multiple plasmids and are MDR, with six isolates carrying one mcr-1 positive plasmid and one isolate (14EC033) carrying two mcr-1 positive plasmids. These eight mcr-1 positive plasmids belonged to the IncX4, IncI2, and IncP1 types. In addition, the mcr-1 gene was the solo antibiotic resistance gene identified in the mcr-1 positive plasmids, while the rest of the antibiotic resistance genes were mostly clustered into one or two plasmids. Interestingly, one mcr-1 positive isolate (14EC047) was susceptible to PB, and we showed that the activity of MCR-1-mediated colistin resistance was not phenotypically expressed in 14EC047 host strain. Furthermore, three isolates exhibited resistance to PB but did not carry previously reported mcr-related genes. Multilocus sequence typing (MLST) showed that these mcr-1 positive E. coli isolates belonged to five different STs, and three isolates belonged to ST301 which carried multiple virulence factors related to diarrhea. Additionally, the mcr-1 positive isolates were all susceptible to imipenem (IMP), suggesting that IMP could be used to treat infection caused by mcr-1 positive E. coli isolates. Collectively, this study showed a high occurrence of mcr-1 positive plasmids in patients with diarrheal diseases of Guangzhou in China and the abolishment of the MCR-1 mediated colistin resistance in one E. coli isolate.


September 22, 2019  |  

Unraveling microbial communities associated with methylmercury production in paddy soils.

Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.


September 22, 2019  |  

Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs.

The mammalian gastrointestinal tract is a heterogeneous ecosystem with the most abundant, and one of the most diverse, microbial communities. The gut microbiota, which may contain more than 100 times the number of genes in the human genome, endows the host with beneficial functional features, including colonization resistance, nutrient metabolism, and immune tolerance (Bäckhed, 2005). Dysbiosis of gut microbiota may result in serious adverse consequences for the host, such as neurological disorders, cancer, obesity, malnutrition, inflammatory dysregulation, and susceptibility to pathogens


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.