Menu
September 22, 2019  |  

MIRU-profiler: a rapid tool for determination of 24-loci MIRU-VNTR profiles from assembled genomes of Mycobacterium tuberculosis.

Tuberculosis (TB) resulted in an estimated 1.7 million deaths in the year 2016. The disease is caused by the members of Mycobacterium tuberculosis complex, which includes Mycobacterium tuberculosis, Mycobacterium bovis and other closely related TB causing organisms. In order to understand the epidemiological dynamics of TB, national TB control programs often conduct standardized genotyping at 24 Mycobacterial-Interspersed-Repetitive-Units (MIRU)-Variable-Number-of-Tandem-Repeats (VNTR) loci. With the advent of next generation sequencing technology, whole-genome sequencing (WGS) has been widely used for studying TB transmission. However, an open-source software that can connect WGS and MIRU-VNTR typing is currently unavailable, which hinders interlaboratory communication. In this manuscript, we introduce the MIRU-profiler program which could be used for prediction of MIRU-VNTR profile from WGS of M. tuberculosis.The MIRU-profiler is implemented in shell scripting language and depends on EMBOSS software. The in-silico workflow of MIRU-profiler is similar to those described in the laboratory manuals for genotyping M. tuberculosis. Given an input genome sequence, the MIRU-profiler computes alleles at the standard 24-loci based on in-silico PCR amplicon lengths. The final output is a tab-delimited text file detailing the 24-loci MIRU-VNTR pattern of the input sequence.The MIRU-profiler was validated on four datasets: complete genomes from NCBI-GenBank (n = 11), complete genomes for locally isolated strains sequenced using PacBio (n = 4), complete genomes for BCG vaccine strains (n = 2) and draft genomes based on 250 bp paired-end Illumina reads (n = 106).The digital MIRU-VNTR results were identical to the experimental genotyping results for complete genomes of locally isolated strains, BCG vaccine strains and five out of 11 genomes from the NCBI-GenBank. For draft genomes based on short Illumina reads, 21 out of 24 loci were inferred with a high accuracy, while a number of inaccuracies were recorded for three specific loci (ETRA, QUB11b and QUB26). One of the unique features of the MIRU-profiler was its ability to process multiple genomes in a batch. This feature was tested on all complete M. tuberculosis genome (n = 157), for which results were successfully obtained in approximately 14 min.The MIRU-profiler is a rapid tool for inference of digital MIRU-VNTR profile from the assembled genome sequences. The tool can accurately infer repeat numbers at the standard 24 or 21/24 MIRU-VNTR loci from the complete or draft genomes respectively. Thus, the tool is expected to bridge the communication gap between the laboratories using WGS and those using the conventional MIRU-VNTR typing.


September 22, 2019  |  

Comparing two Mycobacterium tuberculosis genomes from Chinese immigrants with native genomes using mauve alignments.

The number of immigrants with tuberculosis (TB) increases each year in South Korea. Determining the transmission dynamics based on whole genome sequencing (WGS) to cluster the strains has been challenging.WGS, annotation refinement, and orthology assignment for the GenBank accession number acquisition were performed on two clinical isolates from Chinese immigrants. In addition, the genomes of the two isolates were compared with the genomes of Mycobacterium tuberculosis isolates, from two native Korean and five native Chinese individuals using a phylogenetic topology tree based on the Multiple Alignment of Conserved Genomic Sequence with Rearrangements (Mauve) package.The newly assigned accession numbers for two clinical isolates were CP020381.2 (a Korean-Chinese from Yanbian Province) and CP022014.1 (a Chinese from Shandong Province), respectively. Mauve alignment classified all nine TB isolates into a discriminative collinear set with matched regions. The phylogenetic analysis revealed a rooted phylogenetic tree grouping the nine strains into two lineages: strains from Chinese individuals and strains from Korean individuals.Phylogenetic trees based on the Mauve alignments were supposed to be useful in revealing the dynamics of TB transmission from immigrants in South Korea, which can provide valuable information for scaling up the TB screening policy for immigrants. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.


September 22, 2019  |  

PBHoover and CigarRoller: a method for confident haploid variant calling on Pacific Biosciences data and its application to heterogeneous population analysis

Motivation: Single Molecule Real-Time (SMRT) sequencing has important and underutilized advantages that amplification-based platforms lack. Lack of systematic error (e.g. GC-bias), complete de novo assembly (including large repetitive regions) without scaffolding, can be mentioned. SMRT sequencing, however suffers from high random error rate and low sequencing depth (older chemistries). Here, we introduce PBHoover, software that uses a heuristic calling algorithm in order to make base calls with high certainty in low coverage regions. This software is also capable of mixed population detection with high sensitivity. PBHoovertextquoterights CigarRoller attachment improves sequencing depth in low-coverage regions through CIGAR-string correction. Results: We tested both modules on 348 M.tuberculosis clinical isolates sequenced on C1 or C2 chemistries. On average, CigarRoller improved percentage of usable read count from 68.9% to 99.98% in C1 runs and from 50% to 99% in C2 runs. Using the greater depth provided by CigarRoller, PBHoover was able to make base and variant calls 99.95% concordant with Sanger calls (QV33). PBHoover also detected antibiotic-resistant subpopulations that went undetected by Sanger. Using C1 chemistry, subpopulations as small as 9% of the total colony can be detected by PBHoover. This provides the most sensitive amplification-free molecular method for heterogeneity analysis and is in line with phenotypic methodstextquoteright sensitivity. This sensitivity significantly improves with the greater depth and lower error rate of the newer chemistries. Availability and Implementation: Executables are freely available under GNU GPL v3+ at http://www.gitlab.com/LPCDRP/pbhoover and http://www.gitlab.com/LPCDRP/CigarRoller. PBHoover is also available on bioconda: https://anaconda.org/bioconda/pbhoover.


September 22, 2019  |  

Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing.

Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the “M”- and the “Aronson”-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.


September 22, 2019  |  

Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle.

Pontimonas salivibrio strain CL-TW6T (=KCCM 90105?=?JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized.The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G?+?C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions.Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


September 22, 2019  |  

In vivo evolution of drug-resistant Mycobacterium tuberculosis in patients during long-term treatment.

In the current scenario, the drug-resistant tuberculosis is a significant challenge in the control of tuberculosis worldwide. In order to investigate the in vivo evolution of drug-resistant M. tuberculosis, the present study envisaged sequencing of the draft genomes of 18 serial isolates from four pre-extensively drug-resistant (pre-XDR) tuberculosis patients for continuous genetic alterations.All of the isolates harbored single nucleotide polymorphisms (SNPs) ranging from 1303 to 1309 with M. tuberculosis H37Rv as the reference. SNPs ranged from 0 to 12 within patients. The evolution rates were higher than the reported SNPs of 0.5 in the four patients. All the isolates exhibited mutations at sites of known drug targets, while some contained mutations in uncertain drug targets including folC, proZ, and pyrG. The compensatory substitutions for rescuing these deleterious mutations during evolution were only found in RpoC I491T in one patient. Many loci with microheterogeneity showed transient mutations in different isolates. Ninety three SNPs exhibited significant association with refractory pre-XDR TB isolates.Our results showed evolutionary changes in the serial genetic characteristics of the pre-XDR TB patients due to accumulation of the fixed drug-resistant related mutations, and the transient mutations under continuous antibiotics pressure over several years.


September 22, 2019  |  

Genome-wide SNP and InDel mutations in Mycobacterium tuberculosis associated with rifampicin and isoniazid resistance

Objective: Multiple resistances to isoniazid and rifampicin lead to the majority of death associated with M. tuberculosis infection. This study aimed to characterize the single nucleotide polymorphisms (SNPs) and insertion and deletion (InDel) mutations associated with isoniazid and rifampicin resistance. Methods: The M. tuberculosis strain H37Rv was cultured and treated with isoniazid or rifampicin for generations. Total DNA samples from different generations were extracted for construction of DNA library, and the SNP and InDel mutation in different samples were detected by whole genome sequencing. Bioinformatics analysis such as phylogenetic tree and heap map were also performed. Results: Totally 58 nonsynonymous SNP mutations, 64 synonymous SNP mutations, and 99 SNP mutations in intergenic regions were detected in M. tuberculosis strains treated with rifampicin or isoniazid. Seven InDel mutations were found in the intergenic regions, and also six frameshift InDel mutation and three non- frameshift InDel mutations were also characterized. The phylogenetic tree showed clustering of all samples into three main subgroups. A great number of known and newly identified genes associated with drug resistance were detected in M. tuberculosis, showing distinct mutation patterns. Conclusion: By whole genome sequencing, many genetic mutations in both known and new genes associated with isoniazid and rifampicin resistance were charac- terized in M. tuberculosis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.