fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Characterization of the Rosellinia necatrix transcriptome and genes related to pathogenesis by single-molecule mRNA sequencing.

White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world’s most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using…

Read More »

Sunday, September 22, 2019

Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line.

The SK-BR-3 cell line is one of the most important models for HER2+ breast cancers, which affect one in five breast cancer patients. SK-BR-3 is known to be highly rearranged, although much of the variation is in complex and repetitive regions that may be underreported. Addressing this, we sequenced SK-BR-3 using long-read single molecule sequencing from Pacific Biosciences and develop one of the most detailed maps of structural variations (SVs) in a cancer genome available, with nearly 20,000 variants present, most of which were missed by short-read sequencing. Surrounding the important ERBB2 oncogene (also known as HER2), we discover a…

Read More »

Sunday, September 22, 2019

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT…

Read More »

Sunday, September 22, 2019

Revealing missing human protein isoforms based on Ab initio prediction, RNA-seq and proteomics.

Biological and biomedical research relies on comprehensive understanding of protein-coding transcripts. However, the total number of human proteins is still unknown due to the prevalence of alternative splicing. In this paper, we detected 31,566 novel transcripts with coding potential by filtering our ab initio predictions with 50 RNA-seq datasets from diverse tissues/cell lines. PCR followed by MiSeq sequencing showed that at least 84.1% of these predicted novel splice sites could be validated. In contrast to known transcripts, the expression of these novel transcripts were highly tissue-specific. Based on these novel transcripts, at least 36 novel proteins were detected from shotgun…

Read More »

Sunday, September 22, 2019

Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing.

Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of…

Read More »

Sunday, September 22, 2019

SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification.

High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique descriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate how the tool is effective in characterizing and describing the composition of…

Read More »

Sunday, September 22, 2019

Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing.In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands…

Read More »

Sunday, September 22, 2019

High-resolution comparative analysis of great ape genomes.

Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these…

Read More »

Sunday, September 22, 2019

Single-molecule long-read transcriptome dataset of halophyte Halogeton glomeratus.

Soil salinization has become a major challenge for sustainable development of global agriculture. As a result, cultivation of salt-tolerant crop varieties has become a focus of plant breeding. However, development of effective breeding strategies would be significantly enhanced by improving our understanding of salt tolerance mechanisms in plants and identifying genes required for adaptation.

Read More »

Sunday, September 22, 2019

HapIso: An accurate method for the haplotype-specific isoforms reconstruction from long single-molecule reads

Sequencing of RNA provides the possibility to study an individual’s transcriptome landscape and determine allelic expression ratios. Single-molecule protocols generate multi-kilobase reads longer than most transcripts allowing sequencing of complete haplotype isoforms. This allows partitioning the reads into two parental haplotypes. While the read length of the single-molecule protocols is long, the relatively high error rate limits the ability to accurately detect the genetic variants and assemble them into the haplotype-specific isoforms. In this paper, we present HapIso (Haplotype-specific Isoform Reconstruction), a method able to tolerate the relatively high error-rate of the single-molecule platform and partition the isoform reads into…

Read More »

Sunday, September 22, 2019

Assessing the gene content of the megagenome: sugar pine (Pinus lambertiana).

Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq has been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided…

Read More »

Sunday, September 22, 2019

Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human.

Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5′-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences.We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5′ cap selection was performed on the embryo library to provide methodological comparison.…

Read More »

Sunday, September 22, 2019

Comparative transcriptome analysis of genes involved in Na+ transport in the leaves of halophyte Halogeton glomeratus.

Compartmentalization of Na+ into vacuoles is considered to be the most critical aspect of salt tolerance in H. glomeratus, an annual, succulent halophyte. Previous analysis of transcriptome involved in the H. glomeratus salt stress response relied on next-generation sequencing technologies that limit the capture of accurately spliced, full-length isoforms. To gain deeper insights into its salt stress response, we used the H. glomeratus Iso-Seq transcriptome database as a reference, and subsequent next-generation sequencing was subjected to various NaCl concentrations of leaves from plants revealed 115 upregulated and 87 downregulated differentially expressed isoforms (core DEIs). The majority of the core DEIs…

Read More »

Sunday, September 22, 2019

A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.

It is widely acknowledged that transcriptional diversity largely contributes to biological regulation in eukaryotes. Since the advent of second-generation sequencing technologies, a large number of RNA sequencing studies have considerably improved our understanding of transcriptome complexity. However, it still remains a huge challenge for obtaining full-length transcripts because of difficulties in the short read-based assembly. In the present study we employ PacBio single-molecule long-read sequencing technology for whole-transcriptome profiling in rabbit (Oryctolagus cuniculus). We totally obtain 36,186 high-confidence transcripts from 14,474 genic loci, among which more than 23% of genic loci and 66% of isoforms have not been annotated yet…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives