Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.
The Agilent 5200, 5300, and 5400 Fragment Analyzer instruments are fast, high-resolution benchtop capillary electrophoresis (CE) platforms that utilize proprietary markers to accurately size fragments ranging from 10 to 50 kb. This platform allows important DNA quality checkpoints to be completed in one hour for de novo large-genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of time-consuming QC steps involving pulsed field gel electrophoresis (PFGE), saving time by avoiding multiple overnight gel runs when preparing large-insert SMRTbell libraries. Alternative DNA-sizing instruments cannot accurately resolve large DNA fragments in this range.
The Agilent Femto Pulse system automated pulsed-field CE instrument is a fast, high-resolution benchtop capillary electrophoresis (CE) platform that utilizes pulsed-field electrophoresis to separate high molecular weight DNA fragments. This platform allows important DNA quality checkpoints to be completed in less than 1.5 hours with minimal sample input for de novo large genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of gel-based pulsed-field electrophoresis (PFGE) systems to fully support generation of large-insert SMRTbell libraries with accurate sizing to 165 kb. Alternative DNA sizing instruments cannot accurately resolve large DNA fragments…
PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.
In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.
Although the accuracy of the human reference genome is critical for basic and clinical research, structural variants (SVs) have been difficult to assess because data capable of resolving them have been limited. To address potential bias, we sequenced a diversity panel of nine human genomes to high depth using long-read, single-molecule, real-time sequencing data. Systematically identifying and merging SVs =50 bp in length for these nine and one public genome yielded 83,909 sequence-resolved insertions, deletions, and inversions. Among these, 2,839 (2.0 Mbp) are shared among all discovery genomes with an additional 13,349 (6.9 Mbp) present in the majority of humans,…
Bipolar disorder (BD) is a phenotypically and genetically complex neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BD susceptibility, however no disease genes have yet to be identified. Here, we have fully characterized a ~12 Mb significantly linked (lod score=3.54) genomic region on chromosome Xq24-q27 in an extended family from…
Genomic regions with extreme base composition bias and repetitive sequences have long proven challenging for targeted enrichment methods, as they rely upon some form of amplification. Similarly, most DNA sequencing technologies struggle to faithfully sequence regions of low complexity. This has been especially trying for repeat expansion disorders such as Fragile-X disease, Huntington disease and various Ataxias, where the repetitive elements range from several hundreds of bases to tens of kilobases. We have developed a robust, amplification-free targeted enrichment technique, called No-Amp Targeted Sequencing, that employs the CRISPR-Cas9 system. In conjunction with SMRT Sequencing, which delivers long reads spanning the…
The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data…
For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence,…
Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.
The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest…
The expression of androgen receptor (AR) variants is a frequent, yet poorly-understood mechanism of clinical resistance to AR-targeted therapy for castration-resistant prostate cancer (CRPC). Among the multiple AR variants expressed in CRPC, AR-V7 is considered the most clinically-relevant AR variant due to broad expression in CRPC, correlations of AR-V7 expression with clinical resistance, and growth inhibition when AR-V7 is knocked down in CRPC models. Therefore, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The aim of this study was to understand whether other AR variants are co-expressed with AR-V7 and promote…