Menu
September 22, 2019  |  

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the various long-read methods. We discuss their applications and their respective strengths and weaknesses and provide future perspectives. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


September 22, 2019  |  

Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing.

The evolution of mutations in the BCR-ABL1 fusion gene transcript renders CML patients resistant to tyrosine kinase inhibitor (TKI) based therapy. Thus screening for BCR-ABL1 mutations is recommended particularly in patients experiencing poor response to treatment. Herein we describe a novel approach for the detection and surveillance of BCR-ABL1 mutations in CML patients.To detect mutations in the BCR-ABL1 transcript we developed an assay based on the Pacific Biosciences (PacBio) sequencing technology, which allows for single-molecule long-read sequencing of BCR-ABL1 fusion transcript molecules. Samples from six patients with poor response to therapy were analyzed both at diagnosis and follow-up. cDNA was generated from total RNA and a 1,6 kb fragment encompassing the BCR-ABL1 transcript was amplified using long range PCR. To estimate the sensitivity of the assay, a serial dilution experiment was performed.Over 10,000 full-length BCR-ABL1 sequences were obtained for all samples studied. Through the serial dilution analysis, mutations in CML patient samples could be detected down to a level of at least 1%. Notably, the assay was determined to be sufficiently sensitive even in patients harboring a low abundance of BCR-ABL1 levels. The PacBio sequencing successfully identified all mutations seen by standard methods. Importantly, we identified several mutations that escaped detection by the clinical routine analysis. Resistance mutations were found in all but one of the patients. Due to the long reads afforded by PacBio sequencing, compound mutations present in the same molecule were readily distinguished from independent alterations arising in different molecules. Moreover, several transcript isoforms of the BCR-ABL1 transcript were identified in two of the CML patients. Finally, our assay allowed for a quick turn around time allowing samples to be reported upon within 2 days.In summary the PacBio sequencing assay can be applied to detect BCR-ABL1 resistance mutations in both diagnostic and follow-up CML patient samples using a simple protocol applicable to routine diagnosis. The method besides its sensitivity, gives a complete view of the clonal distribution of mutations, which is of importance when making therapy decisions.


September 22, 2019  |  

Current developments in molecular monitoring in chronic myeloid leukemia.

Molecular monitoring plays an essential role in the clinical management of chronic myeloid leukemia (CML) patients, and now guides clinical decision making. Quantitative reverse-transcriptase-polymerase-chain-reaction (qRT-PCR) assessment of BCR-ABL1 transcript levels has become the standard of care protocol in CML. However, further developments are required to assess leukemic burden more efficiently, monitor minimal residual disease (MRD), detect mutations that drive resistance to tyrosine kinase inhibitor (TKI) therapy and identify predictors of response to TKI therapy. Cartridge-based BCR-ABL1 quantitation, digital PCR and next generation sequencing are examples of technologies which are currently being explored, evaluated and translated into the clinic. Here we review the emerging molecular methods/technologies currently being developed to advance molecular monitoring in CML.


September 22, 2019  |  

Long reads: their purpose and place.

In recent years long-read technologies have moved from being a niche and specialist field to a point of relative maturity likely to feature frequently in the genomic landscape. Analogous to next generation sequencing, the cost of sequencing using long-read technologies has materially dropped whilst the instrument throughput continues to increase. Together these changes present the prospect of sequencing large numbers of individuals with the aim of fully characterizing genomes at high resolution. In this article, we will endeavour to present an introduction to long-read technologies showing: what long reads are; how they are distinct from short reads; why long reads are useful and how they are being used. We will highlight the recent developments in this field, and the applications and potential of these technologies in medical research, and clinical diagnostics and therapeutics.


September 22, 2019  |  

Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation.

Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal dominant vascular disorder that is associated with inherited inactivating mutations of the RASA1 gene in the majority of cases. Characteristically, patients exhibit one or more focal cutaneous CM that may occur alone or together with AVM, arteriovenous fistulas or lymphatic vessel abnormalities. The focal nature and varying presentation of lesions has led to the hypothesis that somatic “second hit” inactivating mutations of RASA1 are necessary for disease development. In this study, we examined CM from four different CM-AVM patients for the presence of somatically acquired RASA1 mutations. All four patients were shown to possess inactivating heterozygous germline RASA1 mutations. In one of the patients, a somatic inactivating RASA1 mutation (c.1534C > T, p.Arg512*) was additionally identified in CM lesion tissue. The somatic RASA1 mutation was detected within endothelial cells specifically and was in trans with the germline RASA1 mutation. Together with the germline RASA1 mutation (c.2125C > T, p.Arg709*) in the same patient, the endothelial cell somatic RASA1 mutation likely contributed to lesion development. These studies provide the first clear evidence of the second hit model of CM-AVM pathogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.


September 22, 2019  |  

Functional characterization of the mucus barrier on the Xenopus tropicalis skin surface.

Mucosal surfaces represent critical routes for entry and exit of pathogens. As such, animals have evolved strategies to combat infection at these sites, in particular the production of mucus to prevent attachment and to promote subsequent movement of the mucus/microbe away from the underlying epithelial surface. Using biochemical, biophysical, and infection studies, we have investigated the host protective properties of the skin mucus barrier of the Xenopus tropicalis tadpole. Specifically, we have characterized the major structural component of the barrier and shown that it is a mucin glycoprotein (Otogelin-like or Otogl) with similar sequence, domain organization, and structural properties to human gel-forming mucins. This mucin forms the structural basis of a surface barrier (~6 µm thick), which is depleted through knockdown of Otogl. Crucially, Otogl knockdown leads to susceptibility to infection by the opportunistic pathogen Aeromonas hydrophila To more accurately reflect its structure, tissue localization, and function, we have renamed Otogl as Xenopus Skin Mucin, or MucXS. Our findings characterize an accessible and tractable model system to define mucus barrier function and host-microbe interactions. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

Predicting an HLA-DPB1 expression marker based on standard DPB1 genotyping: Linkage analysis of over 32,000 samples.

The risk of acute graft-versus-host disease (GvHD) after hematopoietic stem cell transplantation is increased with donor-recipient HLA-DPB1 allele mismatching. The single-nucleotide polymorphism (SNP) rs9277534 within the 3′ untranslated region (UTR) correlates with HLA-DPB1 allotype expression and serves as a marker for permissive HLA-DPB1 mismatches. Since rs9277534 is not routinely typed, we analyzed 32,681 samples of mostly European ancestry to investigate if the rs9277534 allele can be reliably imputed from standard DPB1 genotyping. We confirmed the previously-defined linkages between rs9277534 and 18 DPB1 alleles and established additional linkages for 46 DPB1 alleles. Based on these linkages, the rs9277534 allele could be predicted for 99.6% of the samples based on DPB1 genotypes (99.99% concordance). We demonstrate that 100% prediction accuracy could be achieved if the prediction utilized exon 3 sequence information. DPB1 genotyping based on exon 2 data alone allows no unambiguous rs9277534 allele prediction but was estimated to maintain 99% accuracy for samples of European descent. We conclude that DPB1 genotyping is sufficient to infer the DPB1 expression marker rs9277534 with high accuracy. This information could be used to select donors with permissive HLA-DPB1 mismatches without directly screening for rs9277534. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Conventional and single-molecule targeted sequencing method for specific variant detection in IKBKG while bypassing the IKBKGP1 pseudogene.

In addition to Sanger sequencing, next-generation sequencing of gene panels and exomes has emerged as a standard diagnostic tool in many laboratories. However, these captures can miss regions, have poor efficiency, or capture pseudogenes, which hamper proper diagnoses. One such example is the primary immunodeficiency-associated gene IKBKG. Its pseudogene IKBKGP1 makes traditional capture methods aspecific. We therefore developed a long-range PCR method to efficiently target IKBKG, as well as two associated genes (IRAK4 and MYD88), while bypassing the IKBKGP1 pseudogene. Sequencing accuracy was evaluated using both conventional short-read technology and a newer long-read, single-molecule sequencer. Different mapping and variant calling options were evaluated in their capability to bypass the pseudogene using both sequencing platforms. Based on these evaluations, we determined a robust diagnostic application for unambiguous sequencing and variant calling in IKBKG, IRAK4, and MYD88. This method allows rapid identification of selected primary immunodeficiency diseases in patients suffering from life-threatening invasive pyogenic bacterial infections. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Ploidy variation in Kluyveromyces marxianus separates dairy and non-dairy isolates.

Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.


September 22, 2019  |  

High-Resolution Full-Length HLA Typing Method Using Third Generation (Pac-Bio SMRT) Sequencing Technology.

The human HLA genes are among the most polymorphic genes in the human genome. Therefore, it is very difficult to find two unrelated individuals with identical HLA molecules. As a result, HLA Class I and Class II genes are routinely sequenced or serotyped for organ transplantation, autoimmune disease-association studies, drug hypersensitivity research, and other applications. However, these methods were able to give two or four digit data, which was not sufficient enough to understand the completeness of haplotypes of HLA genes. To overcome these limitations, we here described end-to-end workflow for sequencing of HLA class I and class II genes using third generation sequencing, SMRT technology. This method produces fully-phased, unambiguous, allele-level information on the PacBio System.


September 22, 2019  |  

Biology and genome of a newly discovered sibling species of Caenorhabditis elegans.

A ‘sibling’ species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromosomes, allowing delineation of Caenorhabditis genome evolution and revealing unique characteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies.


September 22, 2019  |  

The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen.

Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen.We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence.Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


September 22, 2019  |  

Multisite de novo mutations in human offspring after paternal exposure to ionizing radiation.

A genome-wide evaluation of the effects of ionizing radiation on mutation induction in the mouse germline has identified multisite de novo mutations (MSDNs) as marker for previous exposure. Here we present the results of a small pilot study of whole genome sequencing in offspring of soldiers who served in radar units on weapon systems that were emitting high-frequency radiation. We found cases of exceptionally high MSDN rates as well as an increased mean in our cohort: While a MSDN mutation is detected in average in 1 out of 5 offspring of unexposed controls, we observed 12 MSDNs in altogether 18 offspring, including a family with 6 MSDNs in 3 offspring. Moreover, we found two translocations, also resulting from neighboring mutations. Our findings indicate that MSDNs might be suited in principle for the assessment of DNA damage from ionizing radiation also in humans. However, as exact person-related dose values in risk groups are usually not available, the interpretation of MSDNs in single families would benefit from larger molecular epidemiologic studies on this new biomarker.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.