Menu
September 22, 2019  |  

Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment.

Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.


September 22, 2019  |  

Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes.

Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM) genes are clustered on chromosome 5 and to date four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome releases.We re-sequenced the locus using both Illumina MiSeq and PacBio RS II sequencing technologies and we mapped RNA-seq data from the European Nucleotide Archive (ENA) to this finalized chIFITM locus. Using SureSelect probes capture probes designed to the finalized chIFITM locus, we sequenced the locus of a different chicken breed, namely a White Leghorn, and a turkey.We confirmed the Gallus Gallus v5 consensus except for two insertions of 5 and 1 base pair within the chIFITM3 and B4GALNT4 genes, respectively, and a single base pair deletion within the B4GALNT4 gene. The pull down revealed a single amino acid substitution of A63V in the CIL domain of IFITM2 compared to Red Jungle fowl and 13, 13 and 11 differences between IFITM1, 2 and 3 of chickens and turkeys, respectively. RNA-seq shows chIFITM2 and chIFITM3 expression in numerous tissue types of different chicken breeds and avian cell lines, while the expression of the putative chIFITM1 is limited to the testis, caecum and ileum tissues.Locus resequencing using these capture probes and RNA-seq based expression analysis will allow the further characterization of genetic diversity within Galliformes.


September 22, 2019  |  

Analysis of the gut microbial diversity of dairy cows during peak lactation by PacBio Single-Molecule Real-Time (SMRT) Sequencing.

The gut microbes of dairy cows are strongly associated with their health, but the relationship between milk production and the intestinal microbiota has seldom been studied. Thus, we explored the diversity of the intestinal microbiota during peak lactation of dairy cows.The intestinal microbiota of nine dairy cows at peak lactation was evaluated using the Pacific Biosciences single-molecule real-time (PacBio SMRT) sequencing approach.A total of 32,670 high-quality 16S rRNA gene sequences were obtained, belonging to 12 phyla, 59 families, 107 genera, and 162 species. Firmicutes (83%) were the dominant phylum, while Bacteroides (6.16%) was the dominant genus. All samples showed a high microbial diversity, with numerous genera of short chain fatty acid (SCFA)-producers. The proportion of SCFA producers was relatively high in relation to the identified core intestinal microbiota. Moreover, the predicted functional metagenome was heavily involved in energy metabolism.This study provided novel insights into the link between the dairy cow gut microbiota and milk production.


September 22, 2019  |  

Ensembl 2018

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


September 22, 2019  |  

Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe.

Foraging intensity of large herbivores may exert an indirect top-down ecological force on soil microbial communities via changes in plant litter inputs. We investigated the responses of the soil microbial community to elk (Cervus elaphus) winter range occupancy across a long-term foraging exclusion experiment in the sagebrush steppe of the North American Rocky Mountains, combining phylogenetic analysis of fungi and bacteria with shotgun metagenomics and extracellular enzyme assays. Winter foraging intensity was associated with reduced bacterial richness and increasingly distinct bacterial communities. Although fungal communities did not respond linearly to foraging intensity, a greater ß-diversity response to winter foraging exclusion was observed. Furthermore, winter foraging exclusion increased soil cellulolytic and hemicellulolytic enzyme potential and higher foraging intensity reduced chitinolytic gene abundance. Thus, future changes in winter range occupancy may shape biogeochemical processes via shifts in microbial communities and subsequent changes to their physiological capacities to cycle soil C and N.© 2017 John Wiley & Sons Ltd/CNRS.


September 22, 2019  |  

Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers.

Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplification primer selection, and read length, which can affect the apparent microbial community. In this study, we compared short read 16S rRNA variable regions, V1-V3, with that of near-full length 16S regions, V1-V8, using highly diverse steer rumen microbial communities, in order to examine the impact of technology selection on phylogenetic profiles. Short paired-end reads from the Illumina MiSeq platform were used to generate V1-V3 sequence, while long “circular consensus” reads from the Pacific Biosciences RSII instrument were used to generate V1-V8 data. The two platforms revealed similar microbial operational taxonomic units (OTUs), as well as similar species richness, Good’s coverage, and Shannon diversity metrics. However, the V1-V8 amplified ruminal community resulted in significant increases in several orders of taxa, such as phyla Proteobacteria and Verrucomicrobia (P < 0.05). Taxonomic classification accuracy was also greater in the near full-length read. UniFrac distance matrices using jackknifed UPGMA clustering also noted differences between the communities. These data support the consensus that longer reads result in a finer phylogenetic resolution that may not be achieved by shorter 16S rRNA gene fragments. Our work on the cattle rumen bacterial community demonstrates that utilizing near full-length 16S reads may be useful in conducting a more thorough study, or for developing a niche-specific database to use in analyzing data from shorter read technologies when budgetary constraints preclude use of near-full length 16S sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Multiple regulatory networks are activated during cold stress in Medicago sativa L.

Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.


September 22, 2019  |  

Diverse antibiotic resistance genes in dairy cow manure.

Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.


September 22, 2019  |  

Improved high-quality genome assembly and annotation of Tibetan hulless barley

Background The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called textquotedblleftQingketextquotedblright in Chinese and textquotedblleftNetextquotedblright in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The Tibetan hulless barley in China has about 3500 years of cultivation history, mainly produced in Tibet, Qinghai, Sichuan, Yunnan and other areas. In addition, Tibetan hulless barley has rich nutritional value and outstanding health effects, including the beta glucan, dietary fiber, amylopectin, the contents of trace elements, which are higher than any other cereal crops.Findings Here, we reported an improved high-quality assembly of Tibetan hulless barley genome with 4.0 Gb in size. We employed the falcon assembly package, scaffolding and error correction tools to finish improvement using PacBio long reads sequencing technology, with contig and scaffold N50 lengths of 1.563Mb and 4.006Mb, respectively, representing more continuous than the original Tibetan hulless barley genome nearly two orders of magnitude. We also re-annotated the new assembly, and reported 61,303 stringent confident putative protein-coding genes, of which 40,457 is HC genes. We have developed a new Tibetan hulless barley genome database (THBGD) to download and use friendly, as well as to better manage the information of the Tibetan hulless barley genetic resources.Conclusions The availability of new Tibetan hulless barley genome and annotations will take the genetics of Tibetan hulless barley to a new level and will greatly simplify the breeders effort. It will also enrich the granary of the Tibetan people.AbbreviationsBLASTBasic Local Alignment Search ToolBUSCOBenchmarking Universal Single-Copy OrthologsQVquality valuePacBioPacifc BiosciencesRNA-seqRNA sequencingNGSNext generation sequencingTGSThird generation sequencingTHBGDTibetan hulless barley Genome Database


September 22, 2019  |  

Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken.

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development.Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.


September 22, 2019  |  

Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses

In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy.


September 22, 2019  |  

Complete genome sequence of Enterobacter cloacae R11 reveals multiple genes potentially associated with high-level polymyxin E resistance.

Enterobacter cloacae strain R11 is a multidrug-resistant bacterium isolated from sewage water near a swine feedlot in China. Strain R11 can survive in medium containing up to 192 µg/mL polymyxin E, indicating a tolerance for this antibiotic that is significantly higher than that reported for other gram-negative bacteria. In this study, conjugation experiments showed that partial polymyxin E resistance could be transferred from strain R11 to Escherichia coli strain 25922, revealing that some genes related to polymyxin E resistance are plasmid-based. The complete genome sequence of this strain was determined, yielding a total of 4?993?008 bp (G+C content, 53.15%) and 4908 genes for the circular chromosome and 4 circular plasmids. Genome analysis revealed a total of 73 putative antibiotic resistance genes, including several polymyxin E resistance genes and genes potentially involved in multidrug resistance. These data provide insights into the genetic basis of the polymyxin E resistance and multidrug resistance of E. cloacae.


September 22, 2019  |  

Complete genome sequence of Lactobacillus pentosus SLC13, isolated from mustard pickles, a potential probiotic strain with antimicrobial activity against foodborne pathogenic microorganisms.

Lactobacillus pentosus SLC13 is a high exopolysaccharide (EPS)-producing strain with broad-spectrum antimicrobial activity and the ability to grow in simulated gastrointestinal conditions. SLC13 was isolated from mustard pickles in Taiwan for potential probiotic applications. To better understand the molecular base for its antimicrobial activity and high EPS production, entire genome of SLC13 was determined by PacBio SMRT sequencing.L. pentosus SLC13 contains a genome with a 3,520,510-bp chromosome and a 62,498-bp plasmid. GC content of the complete genome was 46.5% and that of plasmid pSLC13 was 41.3%. Sequences were annotated at the RAST prokaryotic genome annotation server, and the results showed that the genome contained 3172 coding sequences and 82 RNA genes. Seventy-six protein-coding sequences were identified on the plasmid pSLC13. A plantaricin gene cluster, which is responsible for bacteriosins biosynthesis and could be associated with its broad-spectrum antimicrobial activity, was identified based on comparative genomic analysis. Two gene clusters involved in EPS production were also identified.This genomic sequence might contribute to a future application of this strain as probiotic in productive livestock potentially inhibiting competing and pathogenic organisms.


September 22, 2019  |  

Tn6450, a novel multidrug resistance transposon characterized in a Proteus mirabilis isolate from chicken in China.

A novel 65.8-kb multidrug resistance transposon, designated Tn6450, was characterized in a Proteus mirabilis isolate from chicken in China. Tn6450 contains 18 different antimicrobial resistance genes, including cephalosporinase gene blaDHA-1 and fluoroquinolone resistance genes qnrA1 and aac(6′)-Ib-cr It carries a class 1/2 hybrid integron composed of intI2 and a 3′ conserved segment of the class 1 integron. Tn6450 is derived from Tn7 via acquisition of new mobile elements and resistance genes. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Characterization of plasmids harboring blaCTX-M and blaCMY genes in E. coli from French broilers.

Resistance to extended-spectrum cephalosporins (ESC) is a global health issue. The aim of this study was to analyze and compare plasmids coding for resistance to ESC isolated from 16 avian commensal and 17 avian pathogenic Escherichia coli (APEC) strains obtained respectively at slaughterhouse or from diseased broilers in 2010-2012. Plasmid DNA was used to transform E. coli DH5alpha, and the resistances of the transformants were determined. The sequences of the ESC-resistance plasmids prepared from transformants were obtained by Illumina (33 plasmids) or PacBio (1 plasmid). Results showed that 29 of these plasmids contained the blaCTX-M-1 gene and belonged to the IncI1/ST3 type, with 27 and 20 of them carrying the sul2 or tet(A) genes respectively. Despite their diverse origins, several plasmids showed very high percentages of identity. None of the blaCTX-M-1-containing plasmid contained APEC virulence genes, although some of them were detected in the parental strains. Three plasmids had the blaCMY-2 gene, but no other resistance gene. They belonged to IncB/O/K/Z-like or IncFIA/FIB replicon types. The blaCMY-2 IncFIA/FIB plasmid was obtained from a strain isolated from a diseased broiler and also containing a blaCTX-M-1 IncI1/ST3 plasmid. Importantly APEC virulence genes (sitA-D, iucA-D, iutA, hlyF, ompT, etsA-C, iss, iroB-E, iroN, cvaA-C and cvi) were detected on the blaCMY-2 plasmid. In conclusion, our results show the dominance and high similarity of blaCTX-M-1 IncI1/ST3 plasmids, and the worrying presence of APEC virulence genes on a blaCMY-2 plasmid.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.