April 21, 2020  |  

Evolution and global transmission of a multidrug-resistant, community-associated MRSA lineage from the Indian subcontinent

The evolution and global transmission of antimicrobial resistance has been well documented in Gram-negative bacteria and healthcare-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. Here, we trace the recent origins and global spread of a multidrug resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data shows that the clone emerged on the Indian subcontinent in the early 1970s and disseminated rapidly in the 1990s. Short-term outbreaks in community and healthcare settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the divergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional healthcare-associated clones with the epidemiological transmission of community-associated MRSA. Our study demonstrates the importance of whole genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.Importance The Bengal Bay clone (ST772) is a community-acquired and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we show that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally resulting in small-scale community and healthcare outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug-resistance of healthcare-associated S. aureus lineages. This study demonstrates the importance of whole genome sequencing for the surveillance of highly antibiotic resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.


April 21, 2020  |  

Complete Genome Sequence of GD1696, a Low-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus.

The emerging livestock-associated Staphylococcus aureus multilocus sequence type 398 (ST398) appears to have augmented virulence in humans. However, it is unclear if all ST398 strains are equally virulent. Here, we present the chromosomal sequence of a low-virulence ST398 methicillin-susceptible S. aureus (MSSA) strain, GD1696, to investigate ST398 sublineage virulence.Copyright © 2019 McClure et al.


April 21, 2020  |  

One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock.

Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum ß-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species on different farms. Screening all 1,948 isolates for accessory genes encoding antibiotic resistance revealed 41 different genes present in variable proportions in human and livestock isolates. Overall, we identified a low prevalence of shared antimicrobial resistance genes between livestock and humans based on analysis of mobile genetic elements and long-read sequencing. We conclude that within the confines of our sampling framework, there was limited evidence that antimicrobial-resistant pathogens associated with serious human infection had originated from livestock in our region. IMPORTANCE The increasing prevalence of E. coli bloodstream infections is a serious public health problem. We used genomic epidemiology in a One Health study conducted in the East of England to examine putative sources of E. coli associated with serious human disease. E. coli from 1,517 patients with bloodstream infections were compared with 431 isolates from livestock farms and meat. Livestock-associated and bloodstream isolates were genetically distinct populations based on core genome and accessory genome analyses. Identical antimicrobial resistance genes were found in livestock and human isolates, but there was limited overlap in the mobile elements carrying these genes. Within the limitations of sampling, our findings do not support the idea that E. coli causing invasive disease or their resistance genes are commonly acquired from livestock in our region. Copyright © 2019 Ludden et al.


April 21, 2020  |  

Multidrug-Resistant Bovine Salmonellosis Predisposing for Severe Human Clostridial Myonecrosis.

BACKGROUND The overuse of antibiotics in animals promotes the development of multidrug-resistance predisposing for severe polymicrobial human infections. CASE REPORT We describe a case of spontaneous clostridial myonecrosis due to ulcerative colonic infection with multidrug-resistant Salmonella enterica subsp. enterica, serotype 4,[5],12: i: -. Serotyping of the colonic Salmonella isolate in the index case and the bovine farm outbreak isolates from where the patient worked indicated they were both serotype I 4,[5],12: i: -, which is linked with a multitude of large reported disease outbreaks. Further analysis revealed that they are highly genetically related and antibiotic susceptibility testing indicated that they are phenotypically identical. CONCLUSIONS Enteritis due to human acquisition of multidrug-resistant Salmonella from cattle led to the invasion and dissemination of Clostridium septicum resulting in devastating myonecrotic disease. This highlights the ramifications of co-existence and evolution of pathogenic bacteria in animals and humans and lends support to reducing the use of antibiotics in animals.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.