April 21, 2020  |  

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.


April 21, 2020  |  

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida.

Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security. Copyright © 2018. Published by Elsevier Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.