September 22, 2019  |  

Evaluation of tools for long read RNA-seq splice-aware alignment.

High-throughput sequencing has transformed the study of gene expression levels through RNA-seq, a technique that is now routinely used by various fields, such as genetic research or diagnostics. The advent of third generation sequencing technologies providing significantly longer reads opens up new possibilities. However, the high error rates common to these technologies set new bioinformatics challenges for the gapped alignment of reads to their genomic origin. In this study, we have explored how currently available RNA-seq splice-aware alignment tools cope with increased read lengths and error rates. All tested tools were initially developed for short NGS reads, but some have claimed support for long Pacific Biosciences (PacBio) or even Oxford Nanopore Technologies (ONT) MinION reads.The tools were tested on synthetic and real datasets from two technologies (PacBio and ONT MinION). Alignment quality and resource usage were compared across different aligners. The effect of error correction of long reads was explored, both using self-correction and correction with an external short reads dataset. A tool was developed for evaluating RNA-seq alignment results. This tool can be used to compare the alignment of simulated reads to their genomic origin, or to compare the alignment of real reads to a set of annotated transcripts. Our tests show that while some RNA-seq aligners were unable to cope with long error-prone reads, others produced overall good results. We further show that alignment accuracy can be improved using error-corrected reads.https://github.com/kkrizanovic/RNAseqEval, https://figshare.com/projects/RNAseq_benchmark/24391.mile.sikic@fer.hr.Supplementary data are available at Bioinformatics online.© The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com


September 22, 2019  |  

Bypassing the Restriction System To Improve Transformation of Staphylococcus epidermidis.

Staphylococcus epidermidis is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical S. epidermidis strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates. The difficulty in transforming clinical S. epidermidis isolates is primarily due to the type I and IV restriction-modification systems, which act as genetic barriers. Here, we show that efficient plasmid transformation of clinical S. epidermidis isolates from clonal complexes 2, 10, and 89 can be realized by employing a plasmid artificial modification (PAM) in Escherichia coli DC10B containing a ?dcm mutation. This transformative technique should facilitate our ability to genetically modify clinical isolates of S. epidermidis and hence improve our understanding of their pathogenesis in human infections.IMPORTANCEStaphylococcus epidermidis is a source of considerable morbidity worldwide. The underlying mechanisms contributing to the commensal and pathogenic lifestyles of S. epidermidis are poorly understood. Genetic manipulations of clinically relevant strains of S. epidermidis are largely prohibited due to the presence of a strong restriction barrier. With the introductions of the tools presented here, genetic manipulation of clinically relevant S. epidermidis isolates has now become possible, thus improving our understanding of S. epidermidis as a pathogen. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen.

We have explored the importance of the phyllosphere microbiome in plant resistance in the cuticle mutants bdg (BODYGUARD) or lacs2.3 (LONG CHAIN FATTY ACID SYNTHASE 2) that are strongly resistant to the fungal pathogen Botrytis cinerea. The study includes infection of plants under sterile conditions, 16S ribosomal DNA sequencing of the phyllosphere microbiome, and isolation and high coverage sequencing of bacteria from the phyllosphere. When inoculated under sterile conditions bdg became as susceptible as wild-type (WT) plants whereas lacs2.3 mutants retained the resistance. Adding washes of its phyllosphere microbiome could restore the resistance of bdg mutants, whereas the resistance of lacs2.3 results from endogenous mechanisms. The phyllosphere microbiome showed distinct populations in WT plants compared to cuticle mutants. One species identified as Pseudomonas sp isolated from the microbiome of bdg provided resistance to B. cinerea on Arabidopsis thaliana as well as on apple fruits. No direct activity was observed against B. cinerea and the action of the bacterium required the plant. Thus, microbes present on the plant surface contribute to the resistance to B. cinerea. These results open new perspectives on the function of the leaf microbiome in the protection of plants.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


September 22, 2019  |  

First draft genome of an iconic clownfish species (Amphiprion frenatus).

Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.© 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


September 22, 2019  |  

In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction.

Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host’s physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitro culture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners.IMPORTANCE The discovery of insect bacterial endosymbionts (maternally transmitted bacteria) has revolutionized the study of insects, suggesting novel strategies for their control. Most endosymbionts are strongly dependent on their host to survive, making them uncultivable in artificial systems and genetically intractable. Spiroplasma poulsonii is an endosymbiont of Drosophila that affects host metabolism, reproduction, and defense against parasites. By providing the first reliable culture medium that allows a long-lasting in vitro culture of Spiroplasma and by elucidating its complete genome, this work lays the foundation for the development of genetic engineering tools to dissect endosymbiosis with two partners amenable to molecular study. Furthermore, the optimization method that we describe can be used on other yet uncultivable symbionts, opening new technical opportunities in the field of host-microbes interactions. Copyright © 2018 Masson et al.


September 22, 2019  |  

Size and content of the sex-determining region of the Y chromosome in dioecious Mercurialis annua, a plant with homomorphic sex chromosomes.

Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.


September 22, 2019  |  

Otitis in a cat associated with Corynebacterium provencense.

The role of corynebacteria in canine and feline otitis has not been investigated in detail; however, members of this genus are increasingly recognized as pathogens of otitis in both human and veterinary medicine.Here we report the first case of feline otitis associated with the recently described species Corynebacterium provencense. A seven-month old cat presented with a head tilt and ataxia was diagnosed with peripheral vestibular syndrome associated with an otitis media/interna. This took place 6 weeks after resection of a polyp, having initially shown a full recovery with topical ofloxacin and glucocorticoid treatment. Bacteriology of an ear swab yielded a pure culture of corynebacteria, which could not be identified at the species level using routine methods. However, the 16S rRNA gene sequence was 100% identical to the recently published novel corynebacterium species, Corynebacterium provencense. Whole genome sequencing of the cat isolate and calculation of average nucleotide identity (99.1%) confirmed this finding. The cat isolate was found to contain additional presumptive iron acquisition genes that are likely to encode virulence factors. Furthermore, the strain tested resistant to clindamycin, penicillin and ciprofloxacin. The cat was subsequently treated with chloramphenicol, which lead to clinical improvement.Corynebacteria from otitis cases are not routinely identified at the species level and not tested for antimicrobial susceptibility in veterinary laboratories, as they are not considered major pathogens. This may lead to underreporting of this genus or animals being treated with inappropriate antimicrobials since corynebacteria are often resistant to multiple drugs.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.