April 21, 2020  |  

LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.

Completing a genome is an important goal of genome assembly. However, many assemblies, including reference assemblies, are unfinished and have a number of gaps. Long reads obtained from third-generation sequencing (TGS) platforms can help close these gaps and improve assembly contiguity. However, current gap-closure approaches using long reads require extensive runtime and high memory usage. Thus, a fast and memory-efficient approach using long reads is needed to obtain complete genomes.We developed LR_Gapcloser to rapidly and efficiently close the gaps in genome assembly. This tool utilizes long reads generated from TGS sequencing platforms. Tested on de novo assembled gaps, repeat-derived gaps, and real gaps, LR_Gapcloser closed a higher number of gaps faster and with a lower error rate and a much lower memory usage than two existing, state-of-the art tools. This tool utilized raw reads to fill more gaps than when using error-corrected reads. It is applicable to gaps in the assemblies by different approaches and from large and complex genomes. After performing gap-closure using this tool, the contig N50 size of the human CHM1 genome was improved from 143 kb to 19 Mb, a 132-fold increase. We also closed the gaps in the Triticum urartu genome, a large genome rich in repeats; the contig N50 size was increased by 40%. Further, we evaluated the contiguity and correctness of six hybrid assembly strategies by combining the optimal TGS-based and next-generation sequencing-based assemblers with LR_Gapcloser. A proposed and optimal hybrid strategy generated a new human CHM1 genome assembly with marked contiguity. The contig N50 value was greater than 28 Mb, which is larger than previous non-reference assemblies of the diploid human genome.LR_Gapcloser is a fast and efficient tool that can be used to close gaps and improve the contiguity of genome assemblies. A proposed hybrid assembly including this tool promises reference-grade assemblies. The software is available at http://www.fishbrowser.org/software/LR_Gapcloser/.

April 21, 2020  |  

Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing

In recent genome analyses, population-specific reference panels have indicated important. However, reference panels based on short-read sequencing data do not sufficiently cover long insertions. Therefore, the nature of long insertions has not been well documented. Here, we assembled a Japanese genome using single-molecule real-time sequencing data and characterized insertions found in the assembled genome. We identified 3691 insertions ranging from 100?bps to ~10,000?bps in the assembled genome relative to the international reference sequence (GRCh38). To validate and characterize these insertions, we mapped short-reads from 1070 Japanese individuals and 728 individuals from eight other populations to insertions integrated into GRCh38. With this result, we constructed JRGv1 (Japanese Reference Genome version 1) by integrating the 903 verified insertions, totaling 1,086,173 bases, shared by at least two Japanese individuals into GRCh38. We also constructed decoyJRGv1 by concatenating 3559 verified insertions, totaling 2,536,870 bases, shared by at least two Japanese individuals or by six other assemblies. This assembly improved the alignment ratio by 0.4% on average. These results demonstrate the importance of refining the reference assembly and creating a population-specific reference genome. JRGv1 and decoyJRGv1 are available at the JRG website.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.