Menu
September 22, 2019  |  

Tracing back multidrug-resistant bacteria in fresh herb production: from chive to source through the irrigation water chain.

Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.


September 22, 2019  |  

Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B.

Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.


September 22, 2019  |  

Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification.

Protozoan parasites of the genus Leishmania adapt to environmental change through chromosome and gene copy number variations. Only little is known about external or intrinsic factors that govern Leishmania genomic adaptation. Here, by conducting longitudinal genome analyses of 10 new Leishmania clinical isolates, we uncovered important differences in gene copy number among genetically highly related strains and revealed gain and loss of gene copies as potential drivers of long-term environmental adaptation in the field. In contrast, chromosome rather than gene amplification was associated with short-term environmental adaptation to in vitro culture. Karyotypic solutions were highly reproducible but unique for a given strain, suggesting that chromosome amplification is under positive selection and dependent on species- and strain-specific intrinsic factors. We revealed a progressive increase in read depth towards the chromosome ends for various Leishmania isolates, which may represent a nonclassical mechanism of telomere maintenance that can preserve integrity of chromosome ends during selection for fast in vitro growth. Together our data draw a complex picture of Leishmania genomic adaptation in the field and in culture, which is driven by a combination of intrinsic genetic factors that generate strain-specific phenotypic variations, which are under environmental selection and allow for fitness gain.IMPORTANCE Protozoan parasites of the genus Leishmania cause severe human and veterinary diseases worldwide, termed leishmaniases. A hallmark of Leishmania biology is its capacity to adapt to a variety of unpredictable fluctuations inside its human host, notably pharmacological interventions, thus, causing drug resistance. Here we investigated mechanisms of environmental adaptation using a comparative genomics approach by sequencing 10 new clinical isolates of the L. donovani, L. major, and L. tropica complexes that were sampled across eight distinct geographical regions. Our data provide new evidence that parasites adapt to environmental change in the field and in culture through a combination of chromosome and gene amplification that likely causes phenotypic variation and drives parasite fitness gains in response to environmental constraints. This novel form of gene expression regulation through genomic change compensates for the absence of classical transcriptional control in these early-branching eukaryotes and opens new venues for biomarker discovery. Copyright © 2018 Bussotti et al.


September 22, 2019  |  

Reconstitution of eukaryotic chromosomes and manipulation of DNA N6-methyladenine alters chromatin and gene expression

DNA N6-adenine methylation (6mA) has recently been reported in diverse eukaryotes, spanning unicellular organisms to metazoans. Yet the functional significance of 6mA remains elusive due to its low abundance, difficulty of manipulation within native DNA, and lack of understanding of eukaryotic 6mA writers. Here, we report a novel DNA 6mA methyltransferase in ciliates, termed MTA1. The enzyme contains an MT-A70 domain but is phylogenetically distinct from all known RNA and DNA methyltransferases. Disruption of MTA1 in vivo leads to the genome-wide loss of 6mA in asexually growing cells and abolishment of the consensus ApT dimethylated motif. Genes exhibit subtle changes in chromatin organization or RNA expression upon loss of 6mA, depending on their starting methylation level. Mutants fail to complete the sexual cycle, which normally coincides with a peak of MTA1 expression. Thus, MTA1 functions in a developmental stage-specific manner. We determine the impact of 6mA on chromatin organization in vitro by reconstructing complete, full-length ciliate chromosomes harboring 6mA in native or ectopic positions. Using these synthetic chromosomes, we show that 6mA directly disfavors nucleosomes in vitro in a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a novel MT-A70 protein necessary for eukaryotic 6mA methylation and defines the impact of 6mA on chromatin organization using epigenetically defined synthetic chromosomes.


September 22, 2019  |  

Acquired interbacterial defense systems protect against interspecies antagonism in the human gut microbiome

The genomes of bacteria derived from the gut microbiota are replete with pathways that mediate contact-dependent interbacterial antagonism. However, the role of direct interactions between co-resident microbes in driving microbiome composition is not well understood. Here we report the widespread occurrence of acquired interbacterial defense (AID) gene clusters in the human gut microbiome. These clusters are found on predicted mobile elements and encode arrays of immunity genes that confer protection against interbacterial toxin-mediated antagonism in vitro and in gnotobiotic mice. We find that Bacteroides ovatus strains containing AID systems that inactivate B. fragilis toxins delivered between cells by the type VI secretion system are enriched in samples lacking detectable B. fragilis. Moreover, these strains display significantly higher abundance in gut metagenomes than strains without AID systems. Finally, we identify a recombinase-associated AID subtype present broadly in Bacteroidales genomes with features suggestive of active gene acquisition. Our data suggest that neutralization of contact-dependent interbacterial antagonism via AID systems plays an important role in shaping human gut microbiome ecology.


September 22, 2019  |  

The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study.

Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm.A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid.vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission.Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.


September 22, 2019  |  

Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species.

Candida auris is an emergent multidrug-resistant fungal pathogen causing increasing reports of outbreaks. While distantly related to C. albicans and C. glabrata, C. auris is closely related to rarely observed and often multidrug-resistant species from the C. haemulonii clade. Here, we analyze near complete genome assemblies for the four C. auris clades and three related species, and map intra- and inter-species rearrangements across the seven chromosomes. Using RNA-Seq-guided gene predictions, we find that most mating and meiosis genes are conserved and that clades contain either the MTLa or MTLa mating loci. Comparing the genomes of these emerging species to those of other Candida species identifies genes linked to drug resistance and virulence, including expanded families of transporters and lipases, as well as mutations and copy number variants in ERG11. Gene expression analysis identifies transporters and metabolic regulators specific to C. auris and those conserved with related species which may contribute to differences in drug response in this emerging fungal clade.


September 22, 2019  |  

Transcriptional landscape of a blaKPC-2 plasmid and response to imipenem exposure in Escherichia coli TOP10.

The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC-2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC-2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.


September 22, 2019  |  

Mutators as drivers of adaptation in Streptococcus and a risk factor for host jumps and vaccine escape

Heritable hypermutable strains deficient in DNA repair genes (mutators) facilitate microbial adaptation as they may rapidly generate beneficial mutations. Mutators deficient in mismatch (MMR) and oxidised guanine (OG) repair are abundant in clinical samples and show increased adaptive potential in experimental infection models but their role in pathoadaptation is poorly understood. Here we investigate the role of mutators in epidemiology and evolution of the broad host pathogen, Streptococcus iniae, employing 80 strains isolated globally over 40 years. We determine phylogenetic relationship among S. iniae using 10,267 non-recombinant core genome single nucleotide polymorphisms (SNPs), estimate their mutation rate by fluctuation analysis, and detect variation in major MMR (mutS, mutL, dnaN, recD2, rnhC) and OG (mutY, mutM, mutX) genes. S. iniae mutation rate phenotype and genotype are strongly associated with phylogenetic diversification and variation in major streptococcal virulence determinants (capsular polysaccharide, hemolysin, cell chain length, resistance to oxidation, and biofilm formation). Furthermore, profound changes in virulence determinants observed in mammalian isolates (atypical host) and vaccine-escape isolates found in bone (atypical tissue) of vaccinated barramundi are linked to multiple MMR and OG variants and unique mutation rates. This implies that adaptation to new host taxa, new host tissue, and to immunity of a vaccinated host is promoted by mutator strains. Our findings support the importance of mutation rate dynamics in evolution of pathogenic bacteria, in particular adaptation to a drastically different immunological setting that occurs during host jump and vaccine escape events.Importance Host immune response is a powerful selective pressure that drives diversification of pathogenic microorganisms and, ultimately, evolution of new strains. Major adaptive events in pathogen evolution, such as transmission to a new host species or infection of vaccinated hosts, require adaptation to a drastically different immune landscape. Such adaptation may be favoured by hypermutable strains (or mutators) that are defective in normal DNA repair and consequently capable of generating multiple potentially beneficial and compensatory mutations. This permits rapid adjustment of virulence and antigenicity in a new immunological setting. Here we show that mutators, through mutations in DNA repair genes and corresponding shifts in mutation rate, are associated with major diversification events and virulence evolution in the broad host-range pathogen Streptococcus iniae. We show that mutators underpin infection of vaccinated hosts, transmission to new host species and the evolution of new strains.


September 21, 2019  |  

Detecting AGG interruptions in females with a FMR1 premutation by long-read Single-Molecule Sequencing: A 1 year clinical experience.

The fragile X syndrome arises from the FMR1 CGG expansion of a premutation (55-200 repeats) to a full mutation allele (>200 repeats) and is the most frequent cause of inherited X-linked intellectual disability. The risk for a premutation to expand to a full mutation allele depends on the repeat length and AGG triplets interrupting this repeat. In genetic counseling it is important to have information on both these parameters to provide an accurate risk estimate to women carrying a premutation allele and weighing up having children. For example, in case of a small risk a woman might opt for a natural pregnancy followed up by prenatal diagnosis while she might choose for preimplantation genetic diagnosis (PGD) if the risk is high. Unfortunately, the detection of AGG interruptions was previously hampered by technical difficulties complicating their use in diagnostics. Therefore we recently developed, validated and implemented a new methodology which uses long-read single-molecule sequencing to identify AGG interruptions in females with a FMR1 premutation. Here we report on the assets of AGG interruption detection by sequencing and the impact of implementing the assay on genetic counseling.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.