Menu
October 23, 2019  |  

Overview of the wheat genetic transformation and breeding status in China.

In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.


October 23, 2019  |  

Development of a Novel Reference Transcriptome for Scleractinian Coral Porites lutea Using Single-Molecule Long-Read Isoform Sequencing (Iso-Seq)

Elevation in seawater temperature associated with global climate change has caused coral bleaching problems and posed a significant threat to coral health and survival worldwide. Several studies have explored the effects of thermal stress on changes in gene expression levels of both coral hosts and their algal endosymbionts and provided evidences suggesting that corals could acclimatize to environmental stressors through differential regulation of their gene expression (Desalvo et al., 2008, 2010; Császár et al., 2009; Rodriguez-Lanetty et al., 2009; Polato et al., 2010; Meyer et al., 2011; Kenkel et al., 2013). Such information is crucial for understanding the adaptive capacity of the coral holobionts (Hughes et al., 2003). The availability of transcriptome data from a number of coral species and their associated Symbiodinium allows us to probe the molecular stress response of the organisms to heat stress (Traylor-Knowles et al., 2011; Moya et al., 2012; Kenkel et al., 2013; Shinzato et al., 2014; Kitchen et al., 2015; Anderson et al., 2016; Davies et al., 2016). Here, we report the first reference transcriptome for a scleractinian coral Porites lutea, one of the dominant reef-builders in the Indo-West Pacific (Yeemin et al., 2009). We applied both short-read Ion S5 RNA sequencing and long-read Pacific Biosciences (PacBio) isoform sequencing (Iso-seq) to generate transcriptome sequences of P. lutea under normal and heat stress conditions. The key advantage of PacBio’s Iso-seq technology lies within its ability to capture full-length mRNA sequences. These full-length transcripts enable the identification of novel genes/isoforms and the detection of alternative splice variants, which have been shown to be overrepresented in stress responses (Iida et al., 2004; Reddy et al., 2013; Liu and Guo, 2017). We envision that this reference transcriptome will provide a coral research community a valuable resource for investigating changes in gene expression under various biotic/abiotic stress conditions.


October 23, 2019  |  

Nuclease-mediated gene editing by homologous recombination of the human globin locus.

Tal-effector nucleases (TALENs) are engineered proteins that can stimulate precise genome editing through specific DNA double-strand breaks. Sickle cell disease and ß-thalassemia are common genetic disorders caused by mutations in ß-globin, and we engineered a pair of highly active TALENs that induce modification of 54% of human ß-globin alleles near the site of the sickle mutation. These TALENS stimulate targeted integration of therapeutic, full-length beta-globin cDNA to the endogenous ß-globin locus in 19% of cells prior to selection as quantified by single molecule real-time sequencing. We also developed highly active TALENs to human ?-globin, a pharmacologic target in sickle cell disease therapy. Using the ß-globin and ?-globin TALENs, we generated cell lines that express GFP under the control of the endogenous ß-globin promoter and tdTomato under the control of the endogenous ?-globin promoter. With these fluorescent reporter cell lines, we screened a library of small molecule compounds for their differential effect on the transcriptional activity of the endogenous ß- and ?-globin genes and identified several that preferentially upregulate ?-globin expression.


October 23, 2019  |  

Alternative splicing profile and sex-preferential gene expression in the female and male Pacific abalone Haliotis discus hannai.

In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.


October 23, 2019  |  

The genome of common long-arm octopus Octopus minor.

The common long-arm octopus (Octopus minor) is found in mudflats of subtidal zones and faces numerous environmental challenges. The ability to adapt its morphology and behavioral repertoire to diverse environmental conditions makes the species a promising model for understanding genomic adaptation and evolution in cephalopods.The final genome assembly of O. minor is 5.09 Gb, with a contig N50 size of 197 kb and longest size of 3.027 Mb, from a total of 419 Gb raw reads generated using the Pacific Biosciences RS II platform. We identified 30,010 genes; 44.43% of the genome is composed of repeat elements. The genome-wide phylogenetic tree indicated the divergence time between O. minor and Octopus bimaculoides was estimated to be 43 million years ago based on single-copy orthologous genes. In total, 178 gene families are expanded in O. minor in the 14 bilaterian species.We found that the O. minor genome was larger than that of closely related O. bimaculoides, and this difference could be explained by enlarged introns and recently diversified transposable elements. The high-quality O. minor genome assembly provides a valuable resource for understanding octopus genome evolution and the molecular basis of adaptations to mudflats.


September 22, 2019  |  

A chromosome conformation capture ordered sequence of the barley genome.

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


September 22, 2019  |  

Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies.

Autism spectrum disorder (ASD) is one of the most heritable neuropsychiatric conditions. The complex genetic landscape of the disorder includes both common and rare variants at hundreds of genetic loci. This marked heterogeneity has thus far hampered efforts to develop genetic diagnostic panels and targeted pharmacological therapies. Here, we give an overview of the current literature on the genetic basis of ASD, and review recent human brain transcriptome studies and their role in identifying convergent pathways downstream of the heterogeneous genetic variants. We also discuss emerging evidence on the involvement of non-coding genomic regions and non-coding RNAs in ASD.


September 22, 2019  |  

TACO produces robust multisample transcriptome assemblies from RNA-seq.

Accurate transcript structure and abundance inference from RNA sequencing (RNA-seq) data is foundational for molecular discovery. Here we present TACO, a computational method to reconstruct a consensus transcriptome from multiple RNA-seq data sets. TACO employs novel change-point detection to demarcate transcript start and end sites, leading to improved reconstruction accuracy compared with other tools in its class. The tool is available at http://tacorna.github.io and can be readily incorporated into RNA-seq analysis workflows.


September 22, 2019  |  

The transcriptome of human pluripotent stem cells.

Human Embryonic Stem Cells (hESCs) are in vitro derivatives of the inner cell mass of the blastocyst and are characterized by an undifferentiated and pluripotent state that can be perpetuated in time, indefinitely. hESCs provide a unique opportunity to both dissect the molecular mechanisms that are predisposed to the maintenance of pluripotency and model the ability to initiate differentiation and cell commitment within the developing embryo. To fully understand these mechanisms, it is necessary to accurately identify the specific transcriptome of hESCs. Many distinct gene annotation methods, such as cDNA and EST sequencing and RNA-Seq, have been used to identify the transcriptome of hESCs. Lately, we developed a new tool (IDP) to integrate the hybrid sequencing data to characterize a more reliable and comprehensive hESC transcriptome with discoveries of many novel transcripts. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.


September 22, 2019  |  

Transcriptome profiling in the spathe of Anthurium andraeanum ‘Albama’ and its anthocyanin-loss mutant ‘Xueyu’.

Anthurium andraeanum is a popular tropical ornamental plant. Its spathes are brilliantly coloured due to variable anthocyanin contents. To examine the mechanisms that control anthocyanin biosynthesis, we sequenced the spathe transcriptomes of ‘Albama’, a red-spathed cultivar of A. andraeanum, and ‘Xueyu’, its anthocyanin-loss mutant. Both long reads and short reads were sequenced. Long read sequencing produced 805,869 raw reads, resulting in 83,073 high-quality transcripts. Short read sequencing produced 347.79?M reads, and the subsequent assembly resulted in 111,674 unigenes. High-quality transcripts and unigenes were quantified using the short reads, and differential expression analysis was performed between ‘Albama’ and ‘Xueyu’. Obtaining high-quality, full-length transcripts enabled the detection of long transcript structures and transcript variants. These data provide a foundation to elucidate the mechanisms regulating the biosynthesis of anthocyanin in A. andraeanum.


September 22, 2019  |  

Membrane attack complex-associated molecules from redlip mullet (Liza haematocheila): Molecular characterization and transcriptional evidence of C6, C7, C8ß, and C9 in innate immunity.

The redlip mullet (Liza haematocheila) is one of the most economically important fish in Korea and other East Asian countries; it is susceptible to infections by pathogens such as Lactococcus garvieae, Argulus spp., Trichodina spp., and Vibrio spp. Learning about the mechanisms of the complement system of the innate immunity of redlip mullet is important for efforts towards eradicating pathogens. Here, we report a comprehensive study of the terminal complement complex (TCC) components that form the membrane attack complex (MAC) through in-silico characterization and comparative spatial and temporal expression profiling. Five conserved domains (TSP1, LDLa, MACPF, CCP, and FIMAC) were detected in the TCC components, but the CCP and FIMAC domains were absent in MuC8ß and MuC9. Expression analysis of four TCC genes from healthy redlip mullets showed the highest expression levels in the liver, whereas limited expression was observed in other tissues; immune-induced expression in the head kidney and spleen revealed significant responses against Lactococcus garvieae and poly I:C injection, suggesting their involvement in MAC formation in response to harmful pathogenic infections. Furthermore, the response to poly I:C may suggest the role of TCC components in the breakdown of the membrane of enveloped viruses. These findings may help to elucidate the mechanisms behind the complement system of the teleosts innate immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Leveraging multiple transcriptome assembly methods for improved gene structure annotation.

The performance of RNA sequencing (RNA-seq) aligners and assemblers varies greatly across different organisms and experiments, and often the optimal approach is not known beforehand.Here, we show that the accuracy of transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to integrate multiple RNA-seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and select the best transcript models according to user-specified metrics, while solving common artifacts such as erroneous transcript chimerisms.We have implemented this method in an open-source Python3 and Cython program, Mikado, available on GitHub.


September 22, 2019  |  

A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation.

Alternative splicing (AS) is a crucial regulatory mechanism in eukaryotes, which acts by greatly increasing transcriptome diversity. The extent and complexity of AS has been revealed in model plants using high-throughput next-generation sequencing. However, this technique is less effective in accurately identifying transcript isoforms in polyploid species because of the high sequence similarity between coexisting subgenomes. Here we characterize AS in the polyploid species cotton. Using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq), we developed an integrated pipeline for Iso-Seq transcriptome data analysis (https://github.com/Nextomics/pipeline-for-isoseq). We identified 176 849 full-length transcript isoforms from 44 968 gene models and updated gene annotation. These data led us to identify 15 102 fibre-specific AS events and estimate that c. 51.4% of homoeologous genes produce divergent isoforms in each subgenome. We reveal that AS allows differential regulation of the same gene by miRNAs at the isoform level. We also show that nucleosome occupancy and DNA methylation play a role in defining exons at the chromatin level. This study provides new insights into the complexity and regulation of AS, and will enhance our understanding of AS in polyploid species. Our methodology for Iso-Seq data analysis will be a useful reference for the study of AS in other species.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.