June 1, 2021  |  

Complex alternative splicing patterns in hematopoietic cell subpopulations revealed by third-generation long reads.

Background: Alternative splicing expands the repertoire of gene functions and is a signature for different cell populations. Here we characterize the transcriptome of human bone marrow subpopulations including progenitor cells to understand their contribution to homeostasis and pathological conditions such as atherosclerosis and tumor metastasis. To obtain full-length transcript structures, we utilized long reads in addition to RNA-seq for estimating isoform diversity and abundance. Method: Freshly harvested, viable human bone marrow tissues were extracted from discarded harvesting equipment and separated into total bone marrow (total), lineage-negative (lin-) progenitor cells and differentiated cells (lin+) by magnetic bead sorting with antibodies to surface markers of hematopoietic cell lineages. Sequencing was done with SOLiD, Illumina HiSeq (100bp paired-end reads), and PacBio RS II (full-length cDNA library protocol for 1 – 6 kb libraries). Short reads were assembled using both Trinity for de novo assembly and Cufflinks for genome-guided assembly. Full-length transcript consensus sequences were obtained for the PacBio data using the RS_IsoSeq protocol from PacBios SMRTAnalysis software. Quantitation for each sample was done independently for each sequencing platform using Sailfish to obtain the TPM (transcripts per million) using k-mer matching. Results: PacBios long read sequencing technology is capable of sequencing full-length transcripts up to 10 kb and reveals heretofore-unseen isoform diversity and complexity within the hematopoietic cell populations. A comparison of sequencing depth and de novo transcript assembly with short read, second-generation sequencing reveals that, while short reads provide precision in determining portions of isoform structure and supporting larger 5 and 3 UTR regions, it fails in providing a complete structure especially when multiple isoforms are present at the same locus. Increased breadth of isoform complexity is revealed by long reads that permits further elaboration of full isoform diversity and specific isoform abundance within each separate cell population. Sorting the distribution of major and minor isoforms reveals a cell population-specific balance focused on distinct genome loci and shows how tissue specificity and diversity are modulated by alternative splicing.


June 1, 2021  |  

Single Molecule, Real-Time sequencing of full-length cDNA transcripts uncovers novel alternatively spliced isoforms.

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties such as structure, function, or subcellular localization. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be underscored. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing (avg. read length: 10-15 kb) without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. The standard Iso-Seq protocol workflow available for all researchers is presented using a deep dataset of full- length cDNA sequences from the MCF-7 cancer cell line, and multiple tissues (brain, heart, and liver). Detected novel transcripts approaching 10 kb and alternative splicing events are highlighted. Even in extensively profiled samples, the method uncovered large numbers of novel alternatively spliced isoforms and previously unannotated genes.


June 1, 2021  |  

Full-length cDNA sequencing for genome annotation and analysis of alternative splicing

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties and functions. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be understated. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. We applied the Iso-Seq method to the maize (Zea mays) inbred line B73. Full-length cDNAs from six diverse tissues were barcoded and sequenced across multiple size-fractionated SMRTbell libraries. A total of 111,151 unique transcripts were identified. More than half of these transcripts (57%) represented novel, sometimes tissue-specific, isoforms of known genes. In addition to the 2250 novel coding genes and 860 lncRNAs discovered, the Iso-Seq dataset corrected errors in existing gene models, highlighting the value of full-length transcripts for whole gene annotations.


June 1, 2021  |  

Full-length cDNA sequencing on the PacBio Sequel platform

The protein coding potential of most plant and animal genomes is dramatically increased via alternative splicing. Identification and annotation of expressed mRNA isoforms is critical to the understanding of these complex organisms. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing without requiring fragmentation or post-sequencing assembly. The PacBio Sequel platform has improved throughput thereby increasing the number of full-length transcripts per SMRT Cell. Furthermore, loading enhancements on the Sequel instrument have decreased the need for size fractionation steps. We have optimized the Iso-Seq library preparation process for use on the Sequel platform. Here, we demonstrate the capabilities of the Iso-Seq method on the Sequel system using cDNAs from the maize (Zea mays) inbred line B73. Full-length cDNA from six diverse tissues were barcoded, pooled, and sequenced on the PacBio Sequel system using a combination of size-selected and non-size-selected SMRTbell libraries. The results highlight the value of full-length transcripts for genome annotations and analysis of alternative splicing.


June 1, 2021  |  

De novo assembly and preliminary annotation of the Schizocardium californicum genome

Animals in the phylum Hemichordata have provided key understanding of the origins and development of body patterning and nervous system organization. However, efforts to sequence and assemble the genomes of highly heterozygous non-model organisms have proven to be difficult with traditional short read approaches. Long repetitive DNA structures, extensive structural variation between haplotypes in polyploid species, and large genome sizes are limiting factors to achieving highly contiguous genome assemblies. Here we present the highly contiguous de novo assembly and preliminary annotation of an indirect developing hemichordate genome, Schizocardium californicum, using SMRT Sequening long reads.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

Tissue specific alpha-2-Macroglobulin (A2M) splice isoform diversity in Hilsa shad, Tenualosa ilisha (Hamilton, 1822).

The present study, for the first time, reported twelve A2M isoforms in Tenualosa ilisha, through SMRT sequencing. Hilsa shad, T. ilisha, an anadromous fish, faces environmental stresses and is thus prone to diseases. Here, expression profiles of different A2M isoforms in four tissues were studied in T. ilisha, for the tissue specific diversity of A2M. Large scale high quality full length transcripts (>0.99% accuracy) were obtained from liver, ovary, testes and gill transcriptomes, through Iso-sequencing on PacBio RSII. A total of 12 isoforms, with complete putatative proteins, were detected in three tissues (7 isoforms in liver, 4 in ovary and 1 in testes). Complete structure of A2M mRNA was predicted from these isoforms, containing 4680 bp sequence, 35 exons and 1508 amino acids. With Homo sapiens A2M as reference, six functional domains (A2M_N,A2M_N2, A2M, Thiol-ester_cl, Complement and Receptor domain), along with a bait region, were predicted in A2M consensus protein. A total of 35 splice sites were identified in T. ilisha A2M consensus transcript, with highest frequency (55.7%) of GT-AG splice sites, as compared to that of Homo sapiens. Liver showed longest isoform (X1) consisting of all domains, while smallest (X10) was found in ovary with one Receptor domain. Present study predicted five putative markers (I-212, I-269, A-472, S-567 and Y-906) for EUS disease resistance in A2M protein, which were present in MG2 domains (A2M_N and A2M_N2), by comparing with that of resistant and susceptible/unknown response species. These markers classified fishes into two groups, resistant and susceptible response. Potential markers, predicted in T. ilisha, placed it to be EUS susceptible category. Putative markers reported in A2M protein may serve as molecular markers in diagnosis of EUS disease resistance/susceptibility in fishes and may have a potential for inclusion in the marker panel for pilot studies. Further, challenging studies are required to confirm the role of particular A2M isoforms and markers identified in immune protection against EUS disease.


April 21, 2020  |  

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start, splice, polyadenylation and fusion sites. Phylogenetic and enrichment inference of isoform-level measurements implicated early functional divergence and cytosolic proteostatic stress in shaping ovarian tumorigenesis. A complementary imaging-based high-throughput drug screen was performed and subsequently validated, which consistently pinpointed proteasome inhibitors as an effective therapeutic regime by inducing protein aggregates in ovarian cancer cells. Therefore, our study suggests that clinical application of the emerging long-read full-length analysis for improving molecular diagnostics is feasible and informative. An in-depth understanding of the tumor transcriptome complexity allowed by leveraging the hybrid sequencing approach lays the basis to reveal novel and valid therapeutic vulnerabilities in advanced ovarian malignancies.


April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.