Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has…
Genomics studies have shown that the insertions, deletions, duplications, translocations, inversions, and tandem repeat expansions in the structural variant (SV) size range (>50 bp) contribute to the evolution of traits and often have significant associations with agronomically important phenotypes. However, most SVs are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing. While de novo assembly is the most comprehensive way to identify variants in a genome, recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants at low coverage. Here we present SV characterization in…
Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.
To bring personalized medicine to all patients, cancer researchers need more reliable and comprehensive views of somatic variants of all sizes that drive cancer biology.
With the Sequel II System powered by Single Molecule, Real-Time (SMRT) Sequencing technology and SMRT Link v8.0, you can affordably and effectively detect structural variants (SVs), copy number variants, and large indels ranging in size from tens to thousands of base pairs. PacBio long-read whole genome sequencing comprehensively resolves variants in an individual with high precision and recall. For population genetics and pedigree studies, joint calling powers rapid discovery of common variants within a sample cohort.
At AGBT 2017, Mike Schatz from Johns Hopkins University and Cold Spring Harbor Laboratory presented data from sequencing, assembling, and analyzing personalized, phased diploid genomes with either Illumina, 10x Genomics, and PacBio SMRT Sequencing. Compared to the short-read-based methods, PacBio data assembled in large, complete contigs and contained the broadest range of structural variants with the best resolution. Plus: unexpected translocation findings with SMRT Sequencing, validated in follow-up studies.
In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.
In this ASHG 2017 presentation, Charles Lee of The Jackson Laboratory for Genomic Medicine presented work from the Human Genome Structural Variation Consortium. He shared data from efforts to utilize multiple platforms for the comprehensive discovery of structural variations—including insertions, deletions, inversions and mobile element insertions—in individual genomes. By combining various technologies, this research identified 7 times more structural variation per person than was previously known to exist.
To make improvements to crops like corn, soybeans, and canola, scientists at Corteva are building a compendium of crop genomics resources to provide actionable sequence info for genetic discovery, gene-editing, and seed product development. Hear how Kevin Fengler, Comparative Genomics Lead of Data Science and Bioinformatics at Corteva, is using PacBio sequences to build visualization tools and genome assembly pipelines as a contribution to this effort.
In this ASHG workshop presentation , Jonas Korlach, CSO of PacBio, walked attendees through recent product updates and the coming technology roadmap. The Sequel System 6.0 release offered major improvements to accuracy, throughput, structural variant calling, and large-insert libraries, he said, showing examples of 35 kb libraries. Looking ahead, Korlach said that the V2 express library preparation product should be available early in 2019, with the new 8M SMRT Cell being introduced sometime later.
This tutorial provides an overview of the Structural Variant Calling application in SMRT Link and a live demo of how to launch an analysis in SMRT Link and interpret the results. This application identifies large (default: = 20 bp) insertions, deletions, inversions and translocations in a sample relative to a reference from.This tutorial covers features of SMRT Link v6.0.0.
In this webinar, Lori Aro and Cheryl Heiner of PacBio describe how high-throughput amplicon sequencing using Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System allows for the easy and cost-effective generation of high-fidelity, long reads from amplicons ranging in size from several hundred base pairs to 20 kb. Topics covered include the latest advances in SMRT Sequencing performance for detection of all variant types even in difficult to sequence regions of the genome, multiplexing options to increase throughput and improve efficiency, and examples of amplicon sequencing of clinically relevant targets.
During a PAG 2020 workshop, Zev Kronenberg, a senior bioinformatics engineer at PacBio, describes how he used the PacBio Iso-Seq transcriptome sequencing and analysis method to annotate great ape genomes, detangle several complicated loci, and enrich our biological understanding of the differences between apes and humans.
During the past decade, the search for pathogenic mutations in rare human genetic diseases has involved huge efforts to sequence coding regions, or the entire genome, using massively parallel short-read sequencers. However, the approximate current diagnostic rate is
We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and one of Glycine soja, the closest wild relative of G. max. The G. max assemblies are for widely used U.S. cultivars: the northern line ‘Williams 82’ (Wm82); and the southern line ‘Lee’. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 SNPs/kb between Wm82 and Lee, and 4.7 SNPs/kb between these lines and G. soja. SNP distributions and comparisons…