Menu
April 21, 2020  |  

Whole-Genome Sequencing for Characterization of Capsule Locus and Prediction of Serogroup of Invasive Meningococcal Isolates

Invasive meningococcal disease is mainly caused by Neisseria meningitidis serogroups A, B, C, X, W, and Y. The serogroup is typically determined by slide agglutination serogrouping (SASG) and real-time PCR (RT-PCR). We describe a whole-genome sequencing (WGS)-based method to characterize the capsule polysaccharide synthesis (cps) locus, classify N. meningitidis serogroups, and identify mechanisms for nongroupability using 453 isolates from a global strain collection. We identified novel genomic organizations within functional cps loci, consisting of insertion sequence (IS) elements in unique positions that did not disrupt the coding sequence. Genetic mutations (partial gene deletion, missing genes, IS insertion, internal stop, and phase-variable off) that led to nongroupability were identified. The results of WGS and SASG were in 91% to 100% agreement for all serogroups, while the results of WGS and RT-PCR showed 99% to 100% agreement. Among isolates determined to be nongroupable by WGS (31 of 453), the results of all three methods agreed 100% for those without a capsule polymerase gene. However, 61% (WGS versus SASG) and 36% (WGS versus RT-PCR) agreements were observed for the isolates, particularly those with phase variations or internal stops in cps loci, which warrant further characterization by additional tests. Our WGS-based serogrouping method provides comprehensive characterization of the N. meningitidis capsule, which is critical for meningococcal surveillance and outbreak investigations.


April 21, 2020  |  

Phylogenetic relationships and regional spread of meningococcal strains in the meningitis belt, 2011-2016.

Historically, the major cause of meningococcal epidemics in the meningitis belt of sub-Saharan Africa has been Neisseria meningitidis serogroup A (NmA), but the incidence has been substantially reduced since the introduction of a serogroup A conjugate vaccine starting in 2010. We performed whole-genome sequencing on isolates collected post-2010 to assess their phylogenetic relationships and inter-country transmission.A total of 716 invasive meningococcal isolates collected between 2011 and 2016 from 11 meningitis belt countries were whole-genome sequenced for molecular characterization by the three WHO Collaborating Centers for Meningitis.We identified three previously-reported clonal complexes (CC): CC11 (n?=?434), CC181 (n?=?62) and CC5 (n?=?90) primarily associated with NmW, NmX, and NmA, respectively, and an emerging CC10217 (n?=?126) associated with NmC. CC11 expanded throughout the meningitis belt independent of the 2000 Hajj outbreak strain, with isolates from Central African countries forming a distinct sub-lineage within this expansion. Two major sub-lineages were identified for CC181 isolates, one mainly expanding in West African countries and the other found in Chad. CC10217 isolates from the large outbreaks in Nigeria and Niger were more closely related than those from the few cases in Mali and Burkina Faso.Whole-genome based phylogenies revealed geographically distinct strain circulation as well as inter-country transmission events. Our results stress the importance of continued meningococcal molecular surveillance in the region, as well as the development of an affordable vaccine targeting these strains. FUND: Meningitis Research Foundation; CDC’s Office of Advanced Molecular Detection; GAVI, the Vaccine Alliance. Copyright © 2019. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.