Menu
September 22, 2019  |  

The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei

Despite the large interest in the human microbiome in recent years, there are no reports of bacterial DNA methylation in the microbiome. Here metagenomic sequencing using the Pacific Biosciences platform allowed for rapid identification of bacterial GATC methylation status of a bacterial species in human stool samples. For this work, two stool samples were chosen that were dominated by a single species, Bacteroides dorei. Based on 16S rRNA analysis, this species represented over 45% of the bacteria present in these two samples. The B. dorei genome sequence from these samples was determined and the GATC methylation sites mapped. The Bacteroides dorei genome from one subject lacked any GATC methylation and lacked the DNA adenine methyltransferase genes. In contrast, B. dorei from another subject contained 20,551 methylated GATC sites. Of the 4970 open reading frames identified in the GATC methylated B. dorei genome, 3184 genes were methylated as well as 1735 GATC methylations in intergenic regions. These results suggest that DNA methylation patterns are important to consider in multi-omic analyses of microbiome samples seeking to discover the diversity of bacterial functions and may differ between disease states.


September 22, 2019  |  

Comparative genomic analysis of Sulfurospirillum cavolei MES reconstructed from the metagenome of an electrosynthetic microbiome.

Sulfurospirillum spp. play an important role in sulfur and nitrogen cycling, and contain metabolic versatility that enables reduction of a wide range of electron acceptors, including thiosulfate, tetrathionate, polysulfide, nitrate, and nitrite. Here we describe the assembly of a Sulfurospirillum genome obtained from the metagenome of an electrosynthetic microbiome. The ubiquity and persistence of this organism in microbial electrosynthesis systems suggest it plays an important role in reactor stability and performance. Understanding why this organism is present and elucidating its genetic repertoire provide a genomic and ecological foundation for future studies where Sulfurospirillum are found, especially in electrode-associated communities. Metabolic comparisons and in-depth analysis of unique genes revealed potential ecological niche-specific capabilities within the Sulfurospirillum genus. The functional similarities common to all genomes, i.e., core genome, and unique gene clusters found only in a single genome were identified. Based upon 16S rRNA gene phylogenetic analysis and average nucleotide identity, the Sulfurospirillum draft genome was found to be most closely related to Sulfurospirillum cavolei. Characterization of the draft genome described herein provides pathway-specific details of the metabolic significance of the newly described Sulfurospirillum cavolei MES and, importantly, yields insight to the ecology of the genus as a whole. Comparison of eleven sequenced Sulfurospirillum genomes revealed a total of 6246 gene clusters in the pan-genome. Of the total gene clusters, 18.5% were shared among all eleven genomes and 50% were unique to a single genome. While most Sulfurospirillum spp. reduce nitrate to ammonium, five of the eleven Sulfurospirillum strains encode for a nitrous oxide reductase (nos) cluster with an atypical nitrous-oxide reductase, suggesting a utility for this genus in reduction of the nitrous oxide, and as a potential sink for this potent greenhouse gas.


September 22, 2019  |  

Event analysis: Using transcript events to improve estimates of abundance in RNA-seq data.

Alternative splicing leverages genomic content by allowing the synthesis of multiple transcripts and, by implication, protein isoforms, from a single gene. However, estimating the abundance of transcripts produced in a given tissue from short sequencing reads is difficult and can result in both the construction of transcripts that do not exist, and the failure to identify true transcripts. An alternative approach is to catalog the events that make up isoforms (splice junctions and exons). We present here the Event Analysis (EA) approach, where we project transcripts onto the genome and identify overlapping/unique regions and junctions. In addition, all possible logical junctions are assembled into a catalog. Transcripts are filtered before quantitation based on simple measures: the proportion of the events detected, and the coverage. We find that mapping to a junction catalog is more efficient at detecting novel junctions than mapping in a splice aware manner. We identify 99.8% of true transcripts while iReckon identifies 82% of the true transcripts and creates more transcripts not included in the simulation than were initially used in the simulation. Using PacBio Iso-seq data from a mouse neural progenitor cell model, EA detects 60% of the novel junctions that are combinations of existing exons while only 43% are detected by STAR. EA further detects ~5,000 annotated junctions missed by STAR. Filtering transcripts based on the proportion of the transcript detected and the number of reads on average supporting that transcript captures 95% of the PacBio transcriptome. Filtering the reference transcriptome before quantitation, results in is a more stable estimate of isoform abundance, with improved correlation between replicates. This was particularly evident when EA is applied to an RNA-seq study of type 1 diabetes (T1D), where the coefficient of variation among subjects (n = 81) in the transcript abundance estimates was substantially reduced compared to the estimation using the full reference. EA focuses on individual transcriptional events. These events can be quantitate and analyzed directly or used to identify the probable set of expressed transcripts. Simple rules based on detected events and coverage used in filtering result in a dramatic improvement in isoform estimation without the use of ancillary data (e.g., ChIP, long reads) that may not be available for many studies. Copyright © 2018 Newman et al.


September 22, 2019  |  

Single molecule RNA sequencing uncovers trans-splicing and improves annotations in Anopheles stephensi.

Single molecule real-time (SMRT) sequencing has recently been used to obtain full-length cDNA sequences that improve genome annotation and reveal RNA isoforms. Here, we used one such method called isoform sequencing from Pacific Biosciences (PacBio) to sequence a cDNA library from the Asian malaria mosquito Anopheles stephensi. More than 600 000 full-length cDNAs, referred to as reads of insert, were identified. Owing to the inherently high error rate of PacBio sequencing, we tested different approaches for error correction. We found that error correction using Illumina RNA sequencing (RNA-seq) generated more data than using the default SMRT pipeline. The full-length error-corrected PacBio reads greatly improved the gene annotation of Anopheles stephensi: 4867 gene models were updated and 1785 alternatively spliced isoforms were added to the annotation. In addition, six trans-splicing events, where exons from different primary transcripts were joined together, were identified in An. stephensi. All six trans-splicing events appear to be conserved in Culicidae, as they are also found in Anopheles gambiae and Aedes aegypti. The proteins encoded by trans-splicing events are also highly conserved and the orthologues of these proteins are cis-spliced in outgroup species, indicating that trans-splicing may arise as a mechanism to rescue genes that broke up during evolution.© 2017 The Royal Entomological Society.


September 22, 2019  |  

The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.


September 22, 2019  |  

Approaches for surveying cosmic radiation damage in large populations of Arabidopsis thaliana seeds-Antarctic balloons and particle beams.

The Cosmic Ray Exposure Sequencing Science (CRESS) payload system is a proof of concept experiment to assess the genomic impact of space radiation on seeds. CRESS was designed as a secondary payload for the December 2016 high-altitude, high-latitude, and long-duration balloon flight carrying the Boron And Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) experimental hardware. Investigation of the biological effects of Galactic Cosmic Radiation (GCR), particularly those of ions with High-Z and Energy (HZE), is of interest due to the genomic damage this type of radiation inflicts. The biological effects of upper-stratospheric mixed radiation above Antarctica (ANT) were sampled using Arabidopsis thaliana seeds and were compared to those resulting from a controlled simulation of GCR at Brookhaven National Laboratory (BNL) and to laboratory control seed. The payload developed for Antarctica exposure was broadly designed to 1U CubeSat specifications (10cmx10cmx10cm, =1.33kg), maintained 1 atm internal pressure, and carried an internal cargo of four seed trays (about 580,000 seeds) and twelve CR-39 Solid-State Nuclear Track Detectors (SSNTDs). The irradiated seeds were recovered, sterilized and grown on Petri plates for phenotypic screening. BNL and ANT M0 seeds showed significantly reduced germination rates and elevated somatic mutation rates when compared to non-irradiated controls, with the BNL mutation rate also being significantly higher than that of ANT. Genomic DNA from mutants of interest was evaluated with whole-genome sequencing using PacBio SMRT technology. Sequence data revealed the presence of an array of genome structural variants in the genomes of M0 and M1 mutant plants.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.