April 21, 2020  |  

Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings.

To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic classes. Four other plasmids containing 12 different resistance genes, including blaCTX-M-15 and strA/B, were introduced over time, providing additional resistance to aztreonam and streptomycin. Moreover, chromosomal integration of insertion sequence Ecp1-blaCTX-M-15 mediated the inactivation of mgrB responsible for colistin resistance in four isolates from cluster III. To the best of our knowledge, this is the first description of K. pneumoniae ST14 resistant to both carbapenem and colistin in South Korea. Furthermore, although some acquired genes were lost over time, the retention of 12 resistance genes and inactivation of mgrB provided resistance to 13 classes of antibiotics.We describe stepwise changes in OXA-232-producing K. pneumoniae ST14 in vivo over time in terms of antimicrobial resistance. Our findings contribute to our understanding of the evolution of emerging high-risk K. pneumoniae clones and provide reference data for future outbreaks.Copyright © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749-family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium and penicillin-resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs) and the BinL resolution system of the ß-lactamase transposon Tn552 An evolutionary intermediate ~42-kb non-conjugative plasmid pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline-resistance plasmid pT181. IS257 likely facilitated replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized non-conjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous CA-MSSA. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based, from short-, linked-, and long-read sequencing, as well as optical and electronic mapping. The final benchmark set contains 12745 isolated, sequence-resolved insertion and deletion calls =50 base pairs (bp) discovered by at least 2 technologies or 5 callsets, genotyped as heterozygous or homozygous variants by long reads. The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.66 Gbp and 9641 SVs supported by at least one diploid assembly. Support for SVs was assessed using svviz with short-, linked-, and long-read sequence data. In general, there was strong support from multiple technologies for the benchmark SVs, with 90 % of the Tier 1 SVs having support in reads from more than one technology. The Mendelian genotype error rate was 0.3 %, and genotype concordance with manual curation was >98.7 %. We demonstrate the utility of the benchmark set by showing it reliably identifies both false negatives and false positives in high-quality SV callsets from short-, linked-, and long-read sequencing and optical mapping.


April 21, 2020  |  

Complete genome sequence and characterization of virulence genes in Lancefield group C Streptococcus dysgalactiae isolated from farmed amberjack (Seriola dumerili).

Lancefield group C Streptococcus dysgalactiae causes infections in farmed fish. Here, the genome of S. dysgalactiae strain kdys0611, isolated from farmed amberjack (Seriola dumerili) was sequenced. The complete genome sequence of kdys0611 consists of a single chromosome and five plasmids. The chromosome is 2,142,780?bp long and has a GC content of 40%. It possesses 2061 coding sequences and 67 tRNA and 6 rRNA operons. One clustered regularly interspaced short palindromic repeat, 125 insertion sequences, and four predicted prophage elements were identified. Phylogenetic analysis based on 126 core genes suggested that the kdys0611 strain is more closely related to S. dysgalactiae subsp. dysgalactiae than to S. dysgalactiae subsp. equisimilis. The genome of kdys0611 harbors 87 genes with sequence similarity to putative virulence-associated genes identified in other bacteria, of which 57 exhibit amino acid identity (>52%) to genes of the S. dysgalactiae subsp. equisimilis GGS124 human clinical isolate. Four putative virulence genes, emm5 (FGCSD_0256), spg_2 (FGCSD_1961), skc (FGCSD_1012), and cna (FGCSD_0159), in kdys0611 did not show significant homology with any deposited S. dysgalactiae genes. The chromosomal sequence of kdys0611 has been deposited in GenBank under Accession No. AP018726. This is the first report of the complete genome sequence of S. dysgalactiae isolated from fish. © 2019 The Societies and John Wiley & Sons Australia, Ltd.


April 21, 2020  |  

Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.

The aim of this study was to detect the transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in E. faecalis and E. faecium of swine origin in Sichuan Province, China.A total of 158 enterococci strains (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterized by whole genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments.The transferable oxazolidinone resistance determinants, cfr, optrA and poxtA, were detected in zero, six, and one enterococci strains, respectively. The poxtA in one E. faecalis strain was located on a 37,990 bp plasmid, which co-harbored fexB, cat, tet(L) and tet(M), and could be conjugated to E. faecalis JH2-2. One E. faecalis strain harbored two different OptrA variants, including one variant with a single substitution, Q219H, which has not been reported previously. Two optrA-carrying plasmids, pC25-1, with a size of 45,581 bp, and pC54, with a size of 64,500 bp, shared a 40,494 bp identical region that contained genetic context IS1216E-fexA-optrA-erm(A)-IS1216E, which could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 that were inserted into the radC gene.Our study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA or poxtA.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Insertion sequences drive the emergence of a highly adapted human pathogen.

Pseudomonas aeruginosa is a highly adaptive opportunistic pathogen that can have serious health consequences in patients with lung disorders. Taxonomic outliers of P. aeruginosa of environmental origin have recently emerged as infectious for humans. Here, we present the first genome-wide analysis of an isolate that caused fatal haemorrhagic pneumonia. In two clones, CLJ1 and CLJ3, sequentially recovered from a patient with chronic pulmonary disease, insertion of a mobile genetic element into the P. aeruginosa chromosome affected major virulence-associated phenotypes and led to increased resistance to the antibiotics used to combat the infection. Comparative genome, proteome and transcriptome analyses revealed that this ISL3-family insertion sequence disrupted the genes for flagellar components, type IV pili, O-specific antigens, translesion polymerase and enzymes producing hydrogen cyanide. Seven-fold more insertions were detected in the later isolate, CLJ3, than in CLJ1, some of which modified strain susceptibility to antibiotics by disrupting the genes for the outer-membrane porin OprD and the regulator of ß-lactamase expression AmpD. In the Galleria mellonella larvae model, the two strains displayed different levels of virulence, with CLJ1 being highly pathogenic. This study revealed insertion sequences to be major players in enhancing the pathogenic potential of a P. aeruginosa taxonomic outlier by modulating both its virulence and its resistance to antimicrobials, and explains how this bacterium adapts from the environment to a human host.


April 21, 2020  |  

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring blaNDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of blaNDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Into the Thermus Mobilome: Presence, Diversity and Recent Activities of Insertion Sequences Across Thermus spp.

A high level of transposon-mediated genome rearrangement is a common trait among microorganisms isolated from thermal environments, probably contributing to the extraordinary genomic plasticity and horizontal gene transfer (HGT) observed in these habitats. In this work, active and inactive insertion sequences (ISs) spanning the sequenced members of the genus Thermus were characterized, with special emphasis on three T. thermophilus strains: HB27, HB8, and NAR1. A large number of full ISs and fragments derived from different IS families were found, concentrating within megaplasmids present in most isolates. Potentially active ISs were identified through analysis of transposase integrity, and domestication-related transposition events of ISTth7 were identified in laboratory-adapted HB27 derivatives. Many partial copies of ISs appeared throughout the genome, which may serve as specific targets for homologous recombination contributing to genome rearrangement. Moreover, recruitment of IS1000 32 bp segments as spacers for CRISPR sequence was identified, pointing to the adaptability of these elements in the biology of these thermophiles. Further knowledge about the activity and functional diversity of ISs in this genus may contribute to the generation of engineered transposons as new genetic tools, and enrich our understanding of the outstanding plasticity shown by these thermophiles.


April 21, 2020  |  

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2 carrying integron In528, a novel gcu173 carrying integron In1348, and six antibiotic resistance genes were identified. This is the first identification of two copies of the qnrVC6 gene in a single P. putida isolate and a class 1 integron In1348.


April 21, 2020  |  

Potentially mobile denitrification genes identified in Azospirillum sp. strain TSH58.

Denitrification ability is sporadically distributed among diverse bacteria, archaea, and fungi. In addition, disagreement has been found between denitrification gene phylogenies and the 16S rRNA gene phylogeny. These facts have suggested potential occurrences of horizontal gene transfer (HGT) for the denitrification genes. However, evidence of HGT has not been clearly presented thus far. In this study, we identified the sequences and the localization of the nitrite reductase genes in the genomes of 41 denitrifying Azospirillum sp. strains and searched for mobile genetic elements that contain denitrification genes. All Azospirillum sp. strains examined in this study possessed multiple replicons (4 to 11 replicons), with their sizes ranging from 7 to 1,031 kbp. Among those, the nitrite reductase gene nirK was located on large replicons (549 to 941 kbp). Genome sequencing showed that Azospirillum strains that had similar nirK sequences also shared similar nir-nor gene arrangements, especially between the TSH58, Sp7T, and Sp245 strains. In addition to the high similarity between nir-nor gene clusters among the three Azospirillum strains, a composite transposon structure was identified in the genome of strain TSH58, which contains the nir-nor gene cluster and the novel IS6 family insertion sequences (ISAz581 and ISAz582). The nirK gene within the composite transposon system was actively transcribed under denitrification-inducing conditions. Although not experimentally verified in this study, the composite transposon system containing the nir-nor gene cluster could be transferred to other cells if it is moved to a prophage region and the phage becomes activated and released outside the cells. Taken together, strain TSH58 most likely acquired its denitrification ability by HGT from closely related Azospirillum sp. denitrifiers.IMPORTANCE The evolutionary history of denitrification is complex. While the occurrence of horizontal gene transfer has been suggested for denitrification genes, most studies report circumstantial evidences, such as disagreement between denitrification gene phylogenies and the 16S rRNA gene phylogeny. Based on the comparative genome analyses of Azospirillum sp. denitrifiers, we identified denitrification genes, including nirK and norCBQD, located on a mobile genetic element in the genome of Azospirillum sp. strain TSH58. The nirK was actively transcribed under denitrification-inducing conditions. Since this gene was the sole nitrite reductase gene in strain TSH58, this strain most likely benefitted by acquiring denitrification genes via horizontal gene transfer. This finding will significantly advance our scientific knowledge regarding the ecology and evolution of denitrification. Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Genomic characterization of Kerstersia gyiorum SWMUKG01, an isolate from a patient with respiratory infection in China.

The Gram-negative bacterium Kerstersia gyiorum, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of K. gyiorum SWMUKG01, the first clinical isolate from southwest China.The genomic data obtained displayed a single circular chromosome of 3, 945, 801 base pairs in length, which contains 3, 441 protein-coding genes, 55 tRNA genes and 9 rRNA genes. Analysis on the full spectrum of protein coding genes for cellular structures, two-component regulatory systems and iron uptake pathways that may be important for the success of the bacterial survival, colonization and establishment in the host conferred new insights into the virulence characteristics of K. gyiorum. Phylogenomic comparisons with Alcaligenaceae species indicated that K. gyiorum SWMUKG01 had a close evolutionary relationships with Alcaligenes aquatilis and Alcaligenes faecalis.The comprehensive analysis presented in this work determinates for the first time a complete genome sequence of K. gyiorum, which is expected to provide useful information for subsequent studies on pathogenesis of this species.


April 21, 2020  |  

Whole genome sequencing of NDM-1-producing serotype K1 ST23 hypervirulent Klebsiella pneumoniae in China.

The emergence and spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is causing worldwide concern, whereas NDM-producing hvKP is still rare. Here we report the complete genome sequence characteristics of an NDM-1-producing ST23 type clinical hvKP in PR China.Capsular polysaccharide serotyping was performed by PCR. The complete genome sequence of isolate 3214 was obtained using both the Illumina Hiseq platform and Pacbio RS platform. Multilocus sequence type was identified by submitting the genome sequence to mlst 2.0 and the antimicrobial resistance genes and plasmid replicons were identified using ResFinder and PlasmidFinder, respectively. Transferability of the blaNDM-1-bearing plasmid was determined by conjugation experiment, S1 pulsed-field gel electrophoresis and Southern hybridization.Isolate 3214 was classified to ST23 and belonged to the K1 capsular serotype. The isolate’s total genome size was 6 171 644?bp with a G+C content of 56.39 %, consisting of a 5 448 209?bp chromosome and seven plasmids. The resistome included 18 types of antibiotic resistance genes. Fourteen resistance genes including blaNDM-1 and blaCTX-M-14 were located on plasmids and five also including blaCTX-M-14 were in the chromosome. Plasmid pNDM_3214 carrying blaNDM-1 harboured six types of resistance genes surrounded by insertion sequences and was conjugative. The worldwide pLVPK-like virulence plasmid harbouring rmpA2 and rmpA was also found in this isolate.This study provides basic information of phenotypic and genomic features of ST23 CR-hvKP isolate 3214. Our data highlights the potential risk of spread of NDM-1-producing ST23 hvKP.


April 21, 2020  |  

Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats.

The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of N. flagelliforme to thrive under extreme abiotic stresses is supported by the acquisition of genes involved in the protection of photosynthetic apparatus, the formation of monounsaturated fatty acids, responses to UV radiation, and a peculiar role of ornithine metabolism. Transcriptome analysis revealed a distinct acclimation strategy to rehydration, including the strong constitutive expression of genes encoding photosystem I assembly factors and the involvement of post-transcriptional control mechanisms of photosynthetic resuscitation. Our results provide insights into the adaptive mechanisms of subaerial cyanobacteria in their harsh habitats and have important implications to understand the evolutionary transition of cyanobacteria from aquatic environments to terrestrial ecosystems. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.