Menu
September 21, 2019  |  

Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae)

The process of speciation involves whole genome differentiation by overcoming gene flow between diverging populations. We have ample knowledge which evolutionary forces may cause genomic differentiation, and several speciation models have been proposed to explain the transition from genetic to genomic differentiation. However, it is still unclear what are critical conditions enabling genomic differentiation in nature. The Fall armyworm, Spodoptera frugiperda, is observed as two sympatric strains that have different host-plant ranges, suggesting the possibility of ecological divergent selection. In our previous study, we observed that these two strains show genetic differentiation across the whole genome with an unprecedentedly low extent, suggesting the possibility that whole genome sequences started to be differentiated between the strains. In this study, we analyzed whole genome sequences from these two strains from Mississippi to identify critical evolutionary factors for genomic differentiation. The genomic Fst is low (0.017) while 91.3% of 10kb windows have Fst greater than 0, suggesting genome-wide differentiation with a low extent. We identified nearly 400 outliers of genetic differentiation between strains, and found that physical linkage among these outliers is not a primary cause of genomic differentiation. Fst is not significantly correlated with gene density, a proxy for the strength of selection, suggesting that a genomic reduction in migration rate dominates the extent of local genetic differentiation. Our analyses reveal that divergent selection alone is sufficient to generate genomic differentiation, and any following diversifying factors may increase the level of genetic differentiation between diverging strains in the process of speciation.


July 19, 2019  |  

Long-read single molecule sequencing to resolve tandem gene copies: The Mst77Y region on the Drosophila melanogaster Y chromosome.

The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. Copyright © 2015 Krsticevic et al.


July 19, 2019  |  

Birth of a new gene on the Y chromosome of Drosophila melanogaster.

Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ~20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ~2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.


July 19, 2019  |  

Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution.

The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr. Copyright © 2016 Davey et al.


July 19, 2019  |  

Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


July 19, 2019  |  

Genomic changes following the reversal of a Y chromosome to an autosome in Drosophila pseudoobscura

Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real-time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and is not repeat-dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y-to-dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y-to-dot translocation.


July 19, 2019  |  

Winding paths to simplicity: genome evolution in facultative insect symbionts.

Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect-bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. © FEMS 2016.


July 19, 2019  |  

Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila.

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 19, 2019  |  

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation.

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either PacBio or Oxford Nanopore technologies, and achieves a contig NG50 of greater than 21 Mbp on both human and Drosophila melanogaster PacBio datasets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes. Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster.

Highly repetitive satellite DNA (satDNA) repeats are found in most eukaryotic genomes. SatDNAs are rapidly evolving and have roles in genome stability and chromosome segregation. Their repetitive nature poses a challenge for genome assembly and makes progress on the detailed study of satDNA structure difficult. Here, we use single-molecule sequencing long reads from Pacific Biosciences (PacBio) to determine the detailed structure of all major autosomal complex satDNA loci in Drosophila melanogaster, with a particular focus on the 260-bp and Responder satellites. We determine the optimal de novo assembly methods and parameter combinations required to produce a high-quality assembly of these previously unassembled satDNA loci and validate this assembly using molecular and computational approaches. We determined that the computationally intensive PBcR-BLASR assembly pipeline yielded better assemblies than the faster and more efficient pipelines based on the MHAP hashing algorithm, and it is essential to validate assemblies of repetitive loci. The assemblies reveal that satDNA repeats are organized into large arrays interrupted by transposable elements. The repeats in the center of the array tend to be homogenized in sequence, suggesting that gene conversion and unequal crossovers lead to repeat homogenization through concerted evolution, although the degree of unequal crossing over may differ among complex satellite loci. We find evidence for higher-order structure within satDNA arrays that suggest recent structural rearrangements. These assemblies provide a platform for the evolutionary and functional genomics of satDNAs in pericentric heterochromatin. © 2017 Khost et al.; Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome.

The Aedes aegypti mosquito transmits arboviruses, including dengue, chikungunya, and Zika virus. Understanding the mechanisms underlying mosquito immunity could provide new tools to control arbovirus spread. Insects exploit two different RNAi pathways to combat viral and transposon infection: short interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) [1, 2]. Endogenous viral elements (EVEs) are sequences from non-retroviral viruses that are inserted into the mosquito genome and can act as templates for the production of piRNAs [3, 4]. EVEs therefore represent a record of past infections and a reservoir of potential immune memory [5]. The large-scale organization of EVEs has been difficult to resolve with short-read sequencing because they tend to integrate into repetitive regions of the genome. To define the diversity, organization, and function of EVEs, we took advantage of the contiguity associated with long-read sequencing to generate a high-quality assembly of the Ae. aegypti-derived Aag2 cell line genome, an important and widely used model system. We show EVEs are acquired through recombination with specific classes of long terminal repeat (LTR) retrotransposons and organize into large loci (>50 kbp) characterized by high LTR density. These EVE-containing loci have increased density of piRNAs compared to similar regions without EVEs. Furthermore, we detected EVE-derived piRNAs consistent with a targeted processing of persistently infecting virus genomes. We propose that comparisons of EVEs across mosquito populations may explain differences in vector competence, and further study of the structure and function of these elements in the genome of mosquitoes may lead to epidemiological interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

The evolution of dark matter in the mitogenome of seed beetles.

Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613?bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114-10,408?bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200?bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 19, 2019  |  

Firefly genomes illuminate parallel origins of bioluminescence in beetles.

Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.© 2018, Fallon et al.


July 19, 2019  |  

Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains.

Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation.We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains.In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.


July 19, 2019  |  

Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome.

Fireflies are a family of insects within the beetle order Coleoptera, or winged beetles, and they are one of the most well-known and loved insect species because of their bioluminescence. However, the firefly is in danger of extinction because of the massive destruction of its living environment. In order to improve the understanding of fireflies and protect them effectively, we sequenced the whole genome of the terrestrial firefly Pyrocoelia pectoralis.Here, we developed a highly reliable genome resource for the terrestrial firefly Pyrocoelia pectoralis (E. Oliv., 1883; Coleoptera: Lampyridae) using single molecule real time (SMRT) sequencing on the PacBio Sequel platform. In total, 57.8 Gb of long reads were generated and assembled into a 760.4-Mb genome, which is close to the estimated genome size and covered 98.7% complete and 0.7% partial insect Benchmarking Universal Single-Copy Orthologs. The k-mer analysis showed that this genome is highly heterozygous. However, our long-read assembly demonstrates continuousness with a contig N50 length of 3.04 Mb and the longest contig length of 13.69 Mb. Furthermore, 135 589 SSRs and 341 Mb of repeat sequences were detected. A total of 23 092 genes were predicted; 88.44% of genes were annotated with one or more related functions.We assembled a high-quality firefly genome, which will not only provide insights into the conservation and biodiversity of fireflies, but also provide a wealth of information to study the mechanisms of their sexual communication, bio-luminescence, and evolution.© The Authors 2017. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.