X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Infographic: A brief history of microbiology

Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the…

Read More »

Thursday, August 27, 2020

Case Study: Sequencing an historic bacterial collection for the future

The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.

Read More »

Tuesday, April 21, 2020

Chryseobacterium mulctrae sp. nov., isolated from raw cow’s milk.

A Gram-stain-negative bacterial strain, designated CA10T, was isolated from bovine raw milk sampled in Anseong, Republic of Korea. Cells were yellow-pigmented, aerobic, non-motile bacilli and grew optimally at 30?°C and pH 7.0 on tryptic soy agar without supplementation of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain CA10T belonged to the genus Chryseobacterium, family Flavobacteriaceae, and was most closely related to Chryseobacterium indoltheticum ATCC 27950T (98.75?% similarity). The average nucleotide identity and digital DNA-DNA hybridization values of strain CA10T were 94.4 and 56.9?%, respectively, relative to Chryseobacterium scophthalmum DSM 16779T, being lower than the cut-off…

Read More »

Tuesday, April 21, 2020

Allopseudarcicella aquatilis gen. nov., sp. nov., isolated from freshwater.

A Gram-stain-negative, rod-shaped and red-pigmented strain, HME7025T, was isolated from freshwater sampled in the Republic of Korea. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain HME7025T formed a lineage within the family Cytophagaceae of the phylum Bacteroidetes. Strain HME7025T was closely related to the genera Pseudarcicella, Arcicella and Flectobacillus. The 16S rRNA gene sequence similarity values of strain HME7025T were under 94.5?% to its closest phylogenetic neighbours. The major fatty acids of strain HME7025T were iso-C15?:?0 (41.9?%), summed feature 3 (comprising C16?:?1?7c and/or C16?:?1?6c; 12.2?%) and anteiso-C15?:?0 (10.8?%). The major respiratory quinone was menaquinone-7. The major…

Read More »

Tuesday, April 21, 2020

The complete genome sequence and comparative genome analysis of the multi-drug resistant food-borne pathogen Bacillus cereus.

Bacillus cereus is an opportunistic human pathogen causing food-borne gastrointestinal infections and non-gastrointestinal infections worldwide. The strain B. cereus FORC_013 was isolated from fried eel. Its genome was completely sequenced by PacBio technology, analyzed and compared with other complete genome sequences of Bacillus to elucidate the distinct pathogenic features of the strain isolated in South Korea. Genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding tissue-destructive exoenzymes, and pore-forming toxins. In particular, tissue-destructive (hemolysin BL, nonhaemolytic enterotoxins) and cytolytic proteins (cytolysin) were observed in the genome, which damage the plasma membrane of the epithelial cells of the small intestine…

Read More »

Tuesday, April 21, 2020

Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity.

Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally “pure” stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions…

Read More »

Tuesday, April 21, 2020

Long-read amplicon denoising.

Long-read next-generation amplicon sequencing shows promise for studying complete genes or genomes from complex and diverse populations. Current long-read sequencing technologies have challenging error profiles, hindering data processing and incorporation into downstream analyses. Here we consider the problem of how to reconstruct, free of sequencing error, the true sequence variants and their associated frequencies from PacBio reads. Called ‘amplicon denoising’, this problem has been extensively studied for short-read sequencing technologies, but current solutions do not always successfully generalize to long reads with high indel error rates. We introduce two methods: one that runs nearly instantly and is very accurate for…

Read More »

Tuesday, April 21, 2020

Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth.

Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In…

Read More »

Tuesday, April 21, 2020

Consensus and variations in cell line specificity among human metapneumovirus strains.

Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains)…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequences of Four Salmonella enterica Strains (Including Those of Serotypes Montevideo, Mbandaka, and Lubbock) Isolated from Peripheral Lymph Nodes of Healthy Cattle.

Salmonella enterica serotype Lubbock emerged most likely from a Salmonella enterica serotype Mbandaka ancestor that acquired by recombination the fliC operon from Salmonella enterica serotype Montevideo. Here, we report the complete genome sequence of two S. Lubbock, one S. Montevideo, and one S. Mbandaka strain isolated from bovine lymph nodes.

Read More »

Tuesday, April 21, 2020

Long-read sequence and assembly of segmental duplications.

We have developed a computational method based on polyploid phasing of long sequence reads to resolve collapsed regions of segmental duplications within genome assemblies. Segmental Duplication Assembler (SDA; https://github.com/mvollger/SDA ) constructs graphs in which paralogous sequence variants define the nodes and long-read sequences provide attraction and repulsion edges, enabling the partition and assembly of long reads corresponding to distinct paralogs. We apply it to single-molecule, real-time sequence data from three human genomes and recover 33-79 megabase pairs (Mb) of duplications in which approximately half of the loci are diverged (99.9%) and that the diverged sequence corresponds to copy-number-variable paralogs that…

Read More »

Tuesday, April 21, 2020

Whole genome sequencing of NDM-1-producing serotype K1 ST23 hypervirulent Klebsiella pneumoniae in China.

The emergence and spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is causing worldwide concern, whereas NDM-producing hvKP is still rare. Here we report the complete genome sequence characteristics of an NDM-1-producing ST23 type clinical hvKP in PR China.Capsular polysaccharide serotyping was performed by PCR. The complete genome sequence of isolate 3214 was obtained using both the Illumina Hiseq platform and Pacbio RS platform. Multilocus sequence type was identified by submitting the genome sequence to mlst 2.0 and the antimicrobial resistance genes and plasmid replicons were identified using ResFinder and PlasmidFinder, respectively. Transferability of the blaNDM-1-bearing plasmid was determined by conjugation…

Read More »

Tuesday, April 21, 2020

The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide.

Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome…

Read More »

Tuesday, April 21, 2020

SMRT sequencing revealed the diversity and characteristics of defective interfering RNAs in influenza A (H7N9) virus infection.

Influenza defective interfering (DI) particles are replication-incompetent viruses carrying large internal deletion in the genome. The loss of essential genetic information causes abortive viral replication, which can be rescued by co-infection with a helper virus that possesses an intact genome. Despite reports of DI particles present in seasonal influenza A H1N1 infections, their existence in human infections by the avian influenza A viruses, such as H7N9, has not been studied. Here we report the ubiquitous presence of DI-RNAs in nasopharyngeal aspirates of H7N9-infected patients. Single Molecule Real Time (SMRT) sequencing was first applied and long-read sequencing analysis showed that a…

Read More »

1 2 3 5

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »