Menu
June 1, 2021  |  

Best practices for diploid assembly of complex genomes using PacBio: A case study of Cascade Hops

A high quality reference genome is an essential resource for plant and animal breeding and functional and evolutionary studies. The common hop (Humulus lupulus, Cannabaceae) is an economically important crop plant used to flavor and preserve beer. Its genome is large (flow cytometrybased estimates of diploid length >5.4Gb1), highly repetitive, and individual plants display high levels of heterozygosity, which make assembly of an accurate and contiguous reference genome challenging with conventional short-read methods. We present a contig assembly of Cascade Hops using PacBio long reads and the diploid genome assembler, FALCON-Unzip2. The assembly has dramatically improved contiguity and completeness over earlier short-read assemblies. The genome is primarily assembled as haplotypes due to the outbred nature of the organism. We explore patterns of haplotype divergence across the assembly and present strategies to deduplicate haplotypes prior to scaffolding


June 1, 2021  |  

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare disease and common trait association studies, it is necessary to perform population-scale surveys with a technology effective at detecting indels and structural variants, such as PacBio SMRT Sequencing. For these studies, it is important to have a joint calling workflow that works with PacBio reads. We have developed pbsv, an indel and structural variant caller for PacBio reads, that provides a two-step joint calling workflow similar to that used to build the ExAC database. The first stage, discovery, is performed separately for each sample and consolidates whole genome alignments into a sparse representation of potentially variant loci. The second stage, calling, is performed on all samples together and considers only the signatures identified in the discovery stage. We applied the pbsv joint calling workflow to PacBio reads from twenty human genomes, with coverage ranging from 5-fold to 80-fold per sample for a total of 460-fold. The analysis required only 102 CPU hours, and identified over 800,000 indels and structural variants, including hundreds of inversions and translocations, many times more than discovered with short-read sequencing. The workflow is scalable to thousands of samples. The ongoing application of this workflow to thousands of samples will provide insight into the evolution and functional importance of large variants in human evolution and disease.


June 1, 2021  |  

Comprehensive variant detection in a human genome with PacBio high-fidelity reads

Human genomic variations range in size from single nucleotide substitutions to large chromosomal rearrangements. Sequencing technologies tend to be optimized for detecting particular variant types and sizes. Short reads excel at detecting SNVs and small indels, while long or linked reads are typically used to detect larger structural variants or phase distant loci. Long reads are more easily mapped to repetitive regions, but tend to have lower per-base accuracy, making it difficult to call short variants. The PacBio Sequel System produces two main data types: long continuous reads (up to 100 kbp), generated by single passes over a long template, and Circular Consensus Sequence (CCS) reads, generated by calculating the consensus of many sequencing passes over a single shorter template (500 bp to 20 kbp). The long-range information in continuous reads is useful for genome assembly and structural variant detection. The higher base accuracy of CCS effectively detects and phases short variants in single molecules. Recent improvements in library preparation protocols and sequencing chemistry have increased the length, accuracy, and throughput of CCS reads. For the human sample HG002, we collected 28-fold coverage 15 kbp high-fidelity CCS reads with an average read quality above Q20 (99% accuracy). The length and accuracy of these reads allow us to detect SNVs, indels, and structural variants not only in the Genome in a Bottle (GIAB) high confidence regions, but also in segmental duplications, HLA loci, and clinically relevant “difficult-to-map” genes. As with continuous long reads, we call structural variants at 90.0% recall compared to the GIAB structural variant benchmark “truth” set, with the added advantages of base pair resolution for variant calls and improved recall at compound heterozygous loci. With minimap2 alignments, GATK4 HaplotypeCaller variant calls, and simple variant filtration, we have achieved a SNP F-Score of 99.51% and an INDEL F-Score of 80.10% against the GIAB short variant benchmark “truth” set, in addition to calling variants outside of the high confidence region established by GIAB using previous technologies. With the long-range information available in 15 kbp reads, we applied the read-backed phasing tool WhatsHap to generate phase blocks with a mean length of 65 kbp across the entire genome. Using an alignment-based approach, we typed all major MHC class I and class II genes to at least 3-field precision. This new data type has the potential to expand the GIAB high confidence regions and “truth” benchmark sets to many previously difficult-to-map genes and allow a single sequencing protocol to address both short variants and large structural variants.


June 1, 2021  |  

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We further demonstrate the general utility of HiFi reads by analyzing multiple clones of Cabernet Sauvignon. Three different clones were sequenced and de novo assembled with the CANU assembly algorithm, generating draft assemblies of very high contiguity equal to or better than earlier assembly efforts using PacBio long reads. Using the Cabernet Sauvignon Clone 8 assembly as a reference, we mapped the HiFi reads generated from Clone 6 and Clone 47 to identify single nucleotide polymorphisms (SNPs) and structural variants (SVs) that are specific to each of the three samples.


June 1, 2021  |  

Structural variant detection with long read sequencing reveals driver and passenger mutations in a melanoma cell line

Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has important implications for cancer research, as it is clear that SVs are both common and biologically important in many cancer subtypes, including colorectal, breast and ovarian cancer. Without confident and comprehensive detection of structural variants, it is unlikely we have a sufficiently complete picture of all the genomic changes that impact cancer development, disease progression, treatment response, drug resistance, and relapse. To begin to address this unmet need, we have sequenced the COLO829 tumor and matched normal lymphoblastoid cell lines to 49- and 51-fold coverage, respectively, with PacBio SMRT Sequencing, with the goal of developing a high-confidence structural variant call set that can be used to empirically evaluate cost-effective experimental designs for larger scale studies and develop structural variation calling software suitable for cancer genomics. Structural variant calling revealed over 21,000 deletions and 19,500 insertions larger than 20 bp, nearly four times the number of events detected with short-read sequencing. The vast majority of events are shared between the tumor and normal, with about 100 putative somatic deletions and 400 insertions, primarily in microsatellites. A further 40 rearrangements were detected, nearly exclusively in the tumor. One rearrangement is shared between the tumor and normal, t(5;X) which disrupts the mismatch repeat gene MSH3, and is likely a driver mutation. Generating high-confidence call sets that cover the entire size-spectrum of somatic variants from a range of cancer model systems is the first step in determining what will be the best approach for addressing an ongoing blind spot in our current understanding of cancer genomes. Here the application of PacBio sequencing to a melanoma cancer cell line revealed thousands of previously overlooked variants, including a mutation likely involved in tumorogenesis.


June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 10-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a 12kb library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II System with three SMRT Cells 8M. The CCS algorithm was used to generate highly-accurate (average 99.8%) 11.4kb reads, which were mapped to the hg19 reference with pbmm2. We detected small variants using Google DeepVariant with a model trained for CCS and phased the variants using WhatsHap. Structural variants were detected with pbsv. Variant calls were evaluated against Genome in a Bottle (GIAB) benchmarks. Results: With these reads, DeepVariant achieves SNP and Indel F1 scores of 99.82% and 96.70% against the GIAB truth set, and pbsv achieves 95.94% recall on structural variants longer than 50bp. Using WhatsHap, small variants were phased into haplotype blocks with 105kb N50. The improved mappability of long reads allows us to align to and detect variants in medically relevant genes such as CYP2D6 and PMS2 that have proven “difficult-to-map” with short reads. Conclusions: These highly-accurate long reads combine the mappability and ability to detect structural variants of long reads with the accuracy and ability to detect small variants of short reads.


June 1, 2021  |  

Comprehensive structural and copy-number variant detection with long reads

To comprehensively detect large variants in human genomes, we have extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a typical human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH and short reads. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies.


June 1, 2021  |  

Detection and phasing of small variants in Genome in a Bottle samples with highly accurate long reads

Introduction: Long-read PacBio SMRT Sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw read error rates of 10-15%, it has remained difficult to call small variants from long reads. Recent improvements in library preparation, sequencing chemistry, and instrument yield have increased length, accuracy, and throughput of PacBio Circular Consensus (CCS) reads, resulting in 10-20 kb “HiFi” reads with mean read quality above 99%. Materials and Methods: We sequenced 11 kb size-selected libraries from the Genome in a Bottle (GIAB) human reference samples HG001, HG002, and HG005 to approximately 30-fold coverage on the Sequel II System with six SMRT Cells 8M each. The CCS algorithm was used to generate highly accurate (average 99.8%) reads of mean length 10-11 kb, which were then mapped to the hs37d5 reference with pbmm2. We detected small variants using Google DeepVariant and compared these variant calls to GIAB benchmarks. Small variants were then phased with WhatsHap. Results: With these long, highly accurate CCS reads, DeepVariant achieves high SNP and Indel accuracy against the GIAB benchmark truth set for all three reference samples. Using WhatsHap, small variants were phased into haplotype blocks with N50 from 82 to 146 kb. The improved mappability of long reads allows detection of variants in many medically relevant genes such as CYP2D6and PMS2that have proven ‘difficult-to-map’ with short reads. We show that small variant precision and recall remain high down to 15-fold coverage. Conclusions: These highly accurate long reads combine the mappability of noisy long reads with the accuracy and small variant detection utility of short reads, which will allow the detection and phasing of variants in regions that have proven recalcitrant to short read sequencing and variant detection.


June 1, 2021  |  

Copy-number variant detection with PacBio long reads

Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a healthy human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies. To comprehensively detect large variants in human genomes, we extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Together with insertion, deletion, inversion, duplication, and translocation calling from spanning reads, this allows pbsv to comprehensively detect large variants from a single data type.


June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 15-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II with two SMRT Cells 8M. The CCS algorithm was used to generate highly accurate (average 99.9%) 12.9kb reads, which were mapped to the hg19 reference with pbmm2. We detected small variants using Google DeepVariant with a model trained for CCS and phased the variants using WhatsHap. Structural variants were detected with pbsv. Variant calls were evaluated against Genome in a Bottle (GIAB) benchmarks. Results: With these reads, DeepVariant achieves SNP and Indel F1 scores of 99.70% and 96.59% against the GIAB truth set, and pbsv achieves 97.72% recall on structural variants longer than 50bp. Using WhatsHap, small variants were phased into haplotype blocks with 145kb N50. The improved mappability of long reads allows us to align to and detect variants in medically relevant genes such as CYP2D6 and PMS2 that have proven “difficult-to-map” with short reads. Conclusions: These highly accurate long reads combine the mappability and ability to detect structural variants of long reads with the accuracy and ability to detect small variants of short reads.


June 1, 2021  |  

A workflow for the comprehensive detection and prioritization of variants in human genomes with PacBio HiFi reads

PacBio HiFi reads (minimum 99% accuracy, 15-25 kb read length) have emerged as a powerful data type for comprehensive variant detection in human genomes. The HiFi read length extends confident mapping and variant calling to repetitive regions of the genome that are not accessible with short reads. Read length also improves detection of structural variants (SVs), with recall exceeding that of short reads by over 30%. High read quality allows for accurate single nucleotide variant and small indel detection, with precision and recall matching that of short reads. While many tools have been developed to take advantage of these qualities of HiFi reads, there is no end-to-end workflow for the filtering and prioritization of variants uniquely detected with long reads for rare and undiagnosed disease research. We have developed a flexible, modular workflow and web portal for variant analysis from HiFi reads and applied it to a set of rare disease cases unsolved by short-read whole genome sequencing. We expect that broad application of long-read variant detection workflows will solve many more rare disease cases. We have made these tools available at https://github.com/williamrowell/pbRUGD-workflow, and we hope they serve a starting point for developing a robust analysis framework for long read variant detection for rare diseases.


June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has revealed more than 20,000 structural variants spanning over 12 Mb in a healthy human genome. Short-read sequencing fails to detect most structural variants but has remained the more effective approach for small variants, due to 10-15% error rates in long reads, and copy-number variants (CNVs), due to lack of effective long-read variant callers. The development of PacBio highly accurate long reads (HiFi reads) with read lengths of 10-25 kb and quality >99% presents the opportunity to capture all classes of variation with one approach.Methods: We sequence the Genome in a Bottle benchmark sample HG002 and an individual with a presumed Mendelian disease with HiFi reads. We call SNVs and indels with DeepVariant and extend the structural variant caller pbsv to call CNVs using read depth and clipping signatures. Results: For 18-fold coverage with 13 kb HiFi reads, variant calling in HG002 achieves an F1 score of 99.7% for SNVs, 96.6% for indels, and 96.4% for structural variants. Additionally, we detect more than 300 CNVs spanning around 10 Mb. For the Mendelian disease case, HiFi reads reveal thousands of variants that were overlooked by short-read sequencing, including a candidate causative structural variant. Conclusions: These results illustrate the ability of HiFi reads to comprehensively detect variants, including those associated with human disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.