fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

Allele-level sequencing and phasing of full-length HLA class I and II genes using SMRT Sequencing technology

The three classes of genes that comprise the MHC gene family are actively involved in determining donor-recipient compatibility for organ transplant, as well as susceptibility to autoimmune diseases via cross-reacting immunization. Specifically, Class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DQ and -DP are considered medically important for genetic analysis to determine histocompatibility. They are highly polymorphic and have thousands of alleles implicated in disease resistance and susceptibility. The importance of full-length HLA gene sequencing for genotyping, detection of null alleles, and phasing is now widely acknowledged. While DNA-sequencing-based HLA genotyping has become routine, only 7% of…

Read More »

Tuesday, June 1, 2021

Multiplexing human HLA class I & II genotyping with DNA barcode adapters for high throughput research.

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DP and -DQ, play a critical role in the immune system as major factors responsible for organ transplant rejection. The have a direct or linkage-based association with several diseases, including cancer and autoimmune diseases, and are important targets for clinical and drug sensitivity research. HLA genes are also highly polymorphic and their diversity originates from exonic combinations as well as recombination events. A large number of new alleles are expected to be encountered if these genes are sequenced through the UTRs. Thus allele-level resolution is strongly preferred…

Read More »

Tuesday, June 1, 2021

High-accuracy, single-base resolution of near-full-length HIV genomes.

Background: The HIV-1 proviral reservoir is incredibly stable, even while undergoing antiretroviral therapy, and is seen as the major barrier to HIV-1 eradication. Identifying and comprehensively characterizing this reservoir will be critical to achieving an HIV cure. Historically, this has been a tedious and labor intensive process, requiring high-replicate single-genome amplification reactions, or overlapping amplicons that are then reconstructed into full-length genomes by algorithmic imputation. Here, we present a deep sequencing and analysis method able to determine the exact identity and relative abundances of near-full-length HIV genomes from samples containing mixtures of genomes without shearing or complex bioinformatic reconstruction. Methods:…

Read More »

Tuesday, June 1, 2021

Access full spectrum of polymorphisms in HLA class I & II genes, without imputation for disease association and evolutionary research.

MHC class I and II genes are critically monitored by high-resolution sequencing for organ transplant decisions due to their role in GVHD. Their direct or linkage-based causal association, have increased their prominence as targets for drug sensitivity, autoimmune, cancer and infectious disease research. Monitoring HLA genes can however be tricky due to their highly polymorphic nature. Allele-level resolution is thus strongly preferred. However, most studies were historically focused on peptide binding domains of the HLA genes, due to technological challenges. As a result knowledge about the functional role of polymorphisms outside of exons 2 and 3 of HLA genes was…

Read More »

Tuesday, June 1, 2021

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these…

Read More »

Tuesday, June 1, 2021

Resolving KIR genotypes and haplotypes simultaneously using Single Molecule, Real-Time Sequencing

The killer immunoglobulin-like receptors (KIR) genes belong to the immunoglobulin superfamily and are widely studied due to the critical role they play in coordinating the innate immune response to infection and disease. Highly accurate, contiguous, long reads, like those generated by SMRT Sequencing, when combined with target-enrichment protocols, provide a straightforward strategy for generating complete de novo assembled KIR haplotypes. We have explored two different methods to capture the KIR region; one applying the use of fosmid clones and one using Nimblegen capture.

Read More »

Tuesday, June 1, 2021

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types.…

Read More »

Tuesday, June 1, 2021

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of…

Read More »

Tuesday, June 1, 2021

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The…

Read More »

Tuesday, June 1, 2021

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more…

Read More »

Friday, February 5, 2021

ASHG Virtual Poster: The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: SMRT Sequencing as a translational research tool to investigate germline, somatic and infectious diseases

Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.

Read More »

Friday, February 5, 2021

AGBT PacBio Workshop: High-throughput HLA class I whole gene and HLA class II long range typing on PacBio RSII and Sequel Platforms

In a talk at AGBT 2017, Histogenetics CEO Nezih Cereb reported on how SMRT Sequencing is allowing his team to produce full-length, phased sequences for HLA alleles, which are important for matching organ transplants to recipients. The company is typing thousands of samples per day on their PacBio RS II systems and their new Sequel System. Cereb noted that SMRT Sequencing is unique in its ability to reliably phase mutations in the HLA alleles without imputation. Cereb concluded with his plans to use this approach for other complex regions, such as KIR, and announced their continued increasing HLA typing capacity…

Read More »

Friday, February 5, 2021

Webinar: A paradigm shift in HLA sequencing: from exons to high-resolution allele-level HLA yyping

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA -DR, -DQ, and -DP play a critical role in the immune system as primary factors responsible for organ transplant rejection. Additionally, the HLA genes are important targets for clinical and drug sensitivity research because of their direct or linkage-based association with several diseases, including cancer, and autoimmune diseases. HLA genes are highly polymorphic, and their diversity originates from exonic combinations as well as recombination events. With full-length gene sequencing, a significant increase of new alleles in the HLA database is expected, stressing the need for high-resolution sequencing.…

Read More »

Friday, February 5, 2021

Webinar: Understanding SARS-CoV-2 and host immune response to COVID-19 with PacBio sequencing

Studying microbial genomics and infectious disease? Learn how the PacBio Sequel II System can help advance your research, with first-hand perspectives from scientists who are investigating SARS-CoV-2 and COVID-19. In this webinar, Melissa Laird-Smith (Mt. Sinai School of Medicine) discusses her work evaluating the impact of host immune restriction in health and disease with high resolution HLA typing. She is joined by Corey Watson (University of Louisville School of Medicine) who talks about overcoming complexity to elucidate the role of IGH haplotype diversity in antibody-mediated immunity. Hosted by Meredith Ashby, Director of Microbial Genomics at PacBio. Access additional PacBio resources…

Read More »

1 2

Subscribe for blog updates:

Archives