Allelic-level resolution HLA typing is known to improve survival prognoses post Unrelated Donor (UD) Haematopoietic Stem Cell Transplantation (HSCT). Currently, many commonly used HLA typing methodologies are limited either due to the fact that ambiguity cannot be resolved or that they are not amenable to high-throughput laboratories. Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing technology enables sequencing of single molecules in isolation and has read-length capabilities to enable whole gene sequencing for HLA. DNA barcode technology labels samples with unique identifiers that can be traced throughout the sequencing process. The use of DNA barcodes means that multiple samples can…
Sequence based typing (SBT) is considered the gold standard method for HLA typing. Current SBT methods are rather laborious and are prone to phase ambiguity problems and genotyping uncertainties. As a result, the NGS community is rapidly seeking to remedy these challenges, to produce high resolution and high throughput HLA sequencing conducive to a clinical setting. Today, second generation NGS technologies are limited in their ability to yield full length HLA sequences required for adequate phasing and identification of novel alleles. Here we present the use of single molecule real time (SMRT) sequencing as a means of determining full length/long…
The correct phasing of genetic variations is a key challenge for many applications of DNA sequencing. Allele-level resolution is strongly preferred for histocompatibility sequencing where recombined genes can exhibit different compatibilities than their parents. In other contexts, gene complementation can provide protection if deleterious mutations are found on only one allele of a gene. These problems are especially pronounced in immunological domains given the high levels of genetic diversity and recombination seen in regions like the Major Histocompatibility Complex. A new tool for analyzing Single Molecule, Real-Time (SMRT) Sequencing data – Long Amplicon Analysis (LAA) – can generate highly accurate,…
Fully phased allele-level sequencing of highly polymorphic HLA genes is greatly facilitated by SMRT Sequencing technology. In the present work, we have evaluated multiple DNA barcoding strategies for multiplexing several loci from multiple individuals, using three different tagging methods. Specifically MHC class I genes HLA-A, -B, and –C were indexed via DNA Barcodes by either tailed primers or barcoded SMRTbell adapters. Eight different 16-bp barcode sequences were used in symmetric & asymmetric pairing. Eight DNA barcoded adapters in symmetric pairing were independently ligated to a pool of HLA-A, -B and –C for eight different individuals, one at a time and…
We show that linearizing and directly sequencing full-length fosmids simplifies the assembly problem such that it is possible to unambiguously assemble individual haplotypes for the highly repetitive 100-200 kb killer Ig-like receptor (KIR) gene loci of chromosome 19. A tiling of targeted fosmids can be used to clone extended lengths of genomic DNA, 100s of kb in length, but repeat complexity in regions of particular interest, such as the KIR locus, means that sequence assembly of pooled samples into complete haplotypes is difficult and in many cases impossible. The current maximum read length generated by SMRT Sequencing exceeds the length…
Aim: In contrast to exon-based HLA-typing approaches, whole gene genotyping crucially depends on full-length sequences submitted to the IMGT/HLA Database. Currently, full-length sequences are provided for only 7 out of 520 HLA-DPB1 alleles. Therefore, we developed a fully phased whole-gene sequencing approach for DPB1, to facilitate further exploration of the allelic structure at this locus. Methods: Primers were developed flanking the UTR-regions of DPB1 resulting in a 12 kb amplicon. Using a 4-primer approach, secondary primers containing barcodes were combined with the gene-specific primers to obtain barcoded full-gene amplicons in a single amplification step. Amplicons were pooled, purified, and ligated…
Aim: The vast majority of donor typing relies on sequencing exons 2 and 3 of HLA class I genes (HLA-A, -B, -C). With such an approach certain allele combinations do not result in the anticipated “high resolution” (G-code) typing, due to the lack of exon-phasing information. To resolve ambiguous typing results for a haplotype frequency project, we established a whole gene sequencing approach for HLA class I, facilitating also an estimation of the degree of sequence variability outside the commonly sequenced exons. Methods: Primers were developed flanking the UTR regions resulting in similar amplicon lengths of 4.2-4.4 kb. Using a…
HLA-DPB1 mismatching between patients and unrelated donors is known to increase the risk of acute graft-versus-host-disease (GvHD) after hematopoietic stem cell transplantation. If only HLA-DPB1 mismatched donors are available, the genotype defined by the Single Nucleotide Polymorphism (SNP) rs9277534 can be used to select mismatched donors that are well-tolerated. However, since rs9277534 resides within the 3’ untranslated region (UTR), it usually is not analyzed during DPB1 routine typing.
The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long…
We previously reported on the use of the Ion PGM next generation sequencing (NGS) platform to genotype HLA class I and class II genes by a super-high resolution, single-molecule, sequence-based typing (SS-SBT) method (Shiina et al. 2012). However, HLA alleles could not be assigned at the field 4 level at some HLA loci such as DQA1, DPA1 and DPB1 because the SNP and indel densities were too low to identify and separate both of the phases. In this regard, we have now added the single molecule, real-time (SMRT) DNA sequencer PacBio RS II method to our analysis in order to…
The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…
The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types.…
In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…
Human MHC class I genes HLA-A, -B, -C, and class II genes HLA -DR, -DQ, and -DP play a critical role in the immune system as primary factors responsible for organ transplant rejection. Additionally, the HLA genes are important targets for clinical and drug sensitivity research because of their direct or linkage-based association with several diseases, including cancer, and autoimmune diseases. HLA genes are highly polymorphic, and their diversity originates from exonic combinations as well as recombination events. With full-length gene sequencing, a significant increase of new alleles in the HLA database is expected, stressing the need for high-resolution sequencing.…
The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflect differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ), and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ, and PWD/PhJ), and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline…