Menu
June 1, 2021  |  

Full-length HIV-1 env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibodies (bNAbs) may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined HIV-1 env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 loop region. We developed a PacBio single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics and viral escape motif evolution were interpreted in the context of the development V1/V2-targeting broadly neutralizing antibodies. Results: We collected a median of 6799 (range: 1770-14727) high quality full-length HIV env circular consensus sequences (CCS) per SMRT Cell, per time point. Using only CCS reads comprised of 6 or more passes over the HIV env insert (= 16 kb read length) ensured that our median per-base accuracy was 99.7%. A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found the cloned sequences evenly distributed among PacBio sequences. Viral escape from the V1/V2 targeted bNAbs was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40 months post-infection. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented view and ability to characterize HIV-1 env dynamics throughout the first four years of infection. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which will prove critical for increasing our understanding of how env evolution drives the development of antibody breadth.


April 21, 2020  |  

The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation.

Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent.

Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5% were annotated with known or predicted functions in 25 different COG categories. Ten sets of 23S, 5S, and 16S ribosomal RNA operons, 86 tRNA and 14 sRNA genes, 50 tandem repeats, 41 mini-satellites, one microsatellite, and 42 transposons were identified in G7. Comparing to the genome of the B. subtilis wild type strain NCIB 3610T, G7 genome contains many genomic translocations, inversions, and insertions, and twice the amount of genomic Islands (GIs), with 42.5% of GI genes encoding hypothetical proteins. G7 possesses abundant putative virulence genes associated with adhesion, invasion, dissemination, anti-phagocytosis, and intracellular survival. Experimental studies showed that G7 was able to cause mortality in fish and mice following intramuscular/intraperitoneal injection, resist the killing effect of serum complement, and replicate in mouse macrophages and fish peripheral blood leukocytes. Taken together, our study indicates that G7 is a B. subtilis isolate with unique genetic features and can be lethal to vertebrate animals once being introduced into the animals by artificial means. These results provide the first insight into the potential harmfulness of deep-sea B. subtilis.


October 23, 2019  |  

Transmission, evolution, and endogenization: Lessons learned from recent retroviral invasions.

Viruses of the subfamily Orthoretrovirinaeare defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and “fossil” endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

The role of MHC-E in T cell immunity is conserved among humans, rhesus macaques, and cynomolgus macaques.

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology. Copyright © 2017 by The American Association of Immunologists, Inc.


September 22, 2019  |  

KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques.

Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFa) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFa upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.


September 22, 2019  |  

Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.


September 22, 2019  |  

A human-specific switch of alternatively spliced AFMID isoforms contributes to TP53 mutations and tumor recurrence in hepatocellular carcinoma.

Pre-mRNA splicing can contribute to the switch of cell identity that occurs in carcinogenesis. Here, we analyze a large collection of RNA-seq data sets and report that splicing changes in hepatocyte-specific enzymes, such as AFMID and KHK, are associated with HCC patients’ survival and relapse. The switch of AFMID isoforms is an early event in HCC development and is associated with driver mutations in TP53 and ARID1A The switch of AFMID isoforms is human-specific and not detectable in other species, including primates. Finally, we show that overexpression of the full-length AFMID isoform leads to a higher NAD+ level, lower DNA-damage response, and slower cell growth in HepG2 cells. The integrative analysis uncovered a mechanistic link between splicing switches, de novo NAD+ biosynthesis, driver mutations, and HCC recurrence.© 2018 Lin et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

CliqueSNV: Scalable reconstruction of intra-host viral populations from NGS reads

Highly mutable RNA viruses such as influenza A virus, human immunodeficiency virus and hepatitis C virus exist in infected hosts as highly heterogeneous populations of closely related genomic variants. The presence of low-frequency variants with few mutations with respect to major strains may result in an immune escape, emergence of drug resistance, and an increase of virulence and infectivity. Next-generation sequencing technologies permit detection of sample intra-host viral population at extremely great depth, thus providing an opportunity to access low-frequency variants. Long read lengths offered by single-molecule sequencing technologies allow all viral variants to be sequenced in a single pass. However, high sequencing error rates limit the ability to study heterogeneous viral populations composed of rare, closely related variants. In this article, we present CliqueSNV, a novel reference-based method for reconstruction of viral variants from NGS data. It efficiently constructs an allele graph based on linkage between single nucleotide variations and identifies true viral variants by merging cliques of that graph using combinatorial optimization techniques. The new method outperforms existing methods in both accuracy and running time on experimental and simulated NGS data for titrated levels of known viral variants. For PacBio reads, it accurately reconstructs variants with frequency as low as 0.1%. For Illumina reads, it fully reconstructs main variants. The open source implementation of CliqueSNV is freely available for download at https://github.com/vyacheslav-tsivina/CliqueSNV


September 22, 2019  |  

Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and infect humans and are critical to the pathogenesis of chronic obstructive pulmonary disease (COPD). In vitro and animal models do not accurately capture the complex environments encountered by NTHi during human infection. We conducted whole-genome sequencing of 269 longitudinally collected cleared and persistent NTHi from a 15-y prospective study of adults with COPD. Genome sequences were used to elucidate the phylogeny of NTHi isolates, identify genomic changes that occur with persistence in the human airways, and evaluate the effect of selective pressure on 12 candidate vaccine antigens. Strains persisted in individuals with COPD for as long as 1,422 d. Slipped-strand mispairing, mediated by changes in simple sequence repeats in multiple genes during persistence, regulates expression of critical virulence functions, including adherence, nutrient uptake, and modification of surface molecules, and is a major mechanism for survival in the hostile environment of the human airways. A subset of strains underwent a large 400-kb inversion during persistence. NTHi does not undergo significant gene gain or loss during persistence, in contrast to other persistent respiratory tract pathogens. Amino acid sequence changes occurred in 8 of 12 candidate vaccine antigens during persistence, an observation with important implications for vaccine development. These results indicate that NTHi alters its genome during persistence by regulation of critical virulence functions primarily by slipped-strand mispairing, advancing our understanding of how a bacterial pathogen that plays a critical role in COPD adapts to survival in the human respiratory tract.


September 22, 2019  |  

Computational comparison of availability in CTL/gag epitopes among patients with acute and chronic HIV-1 infection.

Recent studies indicate that there is selection bias for transmission of viral polymorphisms associated with higher viral fitness. Furthermore, after transmission and before a specific immune response is mounted in the recipient, the virus undergoes a number of reversions which allow an increase in their replicative capacity. These aspects, and others, affect the viral population characteristic of early acute infection.160 singlegag-gene amplifications were obtained by limiting-dilution RT-PCR from plasma samples of 8 ARV-naïve patients with early acute infection (<30?days, 22?days average) and 8 ARV-naive patients with approximately a year of infection (10 amplicons per patient). Sanger sequencing and NGS SMRT technology (Pacific Biosciences) were implemented to sequence the amplicons. Phylogenetic analysis was performed by using MEGA 6.06. HLA-I (A and B) typing was performed by SSOP-PCR method. The chromatograms were analyzed with Sequencher 4.10. Epitopes and immune-proteosomal cleavages prediction was performed with CBS prediction server for the 30 HLA-A and -B alleles most prevalent in our population with peptide lengths from 8 to 14 mer. Cytotoxic response prediction was performed by using IEDB Analysis Resource.After implementing epitope prediction analysis, we identified a total number of 325 possible viral epitopes present in two or more acute or chronic patients. 60.3% (n?=?196) of them were present only in acute infection (prevalent acute epitopes) while 39.7% (n?=?129) were present only in chronic infection (prevalent chronic epitopes). Within p24, the difference was equally dramatic with 59.4% (79/133) being acute epitopes (p?


September 22, 2019  |  

Integrating long-range connectivity information into de Bruijn graphs.

The de Bruijn graph is a simple and efficient data structure that is used in many areas of sequence analysis including genome assembly, read error correction and variant calling. The data structure has a single parameter k, is straightforward to implement and is tractable for large genomes with high sequencing depth. It also enables representation of multiple samples simultaneously to facilitate comparison. However, unlike the string graph, a de Bruijn graph does not retain long range information that is inherent in the read data. For this reason, applications that rely on de Bruijn graphs can produce sub-optimal results given their input data.We present a novel assembly graph data structure: the Linked de Bruijn Graph (LdBG). Constructed by adding annotations on top of a de Bruijn graph, it stores long range connectivity information through the graph. We show that with error-free data it is possible to losslessly store and recover sequence from a Linked de Bruijn graph. With assembly simulations we demonstrate that the LdBG data structure outperforms both our de Bruijn graph and the String Graph Assembler (SGA). Finally we apply the LdBG to Klebsiella pneumoniae short read data to make large (12 kbp) variant calls, which we validate using PacBio sequencing data, and to characterize the genomic context of drug-resistance genes.Linked de Bruijn Graphs and associated algorithms are implemented as part of McCortex, which is available under the MIT license at https://github.com/mcveanlab/mccortex.Supplementary data are available at Bioinformatics online.


September 22, 2019  |  

Mutators as drivers of adaptation in Streptococcus and a risk factor for host jumps and vaccine escape

Heritable hypermutable strains deficient in DNA repair genes (mutators) facilitate microbial adaptation as they may rapidly generate beneficial mutations. Mutators deficient in mismatch (MMR) and oxidised guanine (OG) repair are abundant in clinical samples and show increased adaptive potential in experimental infection models but their role in pathoadaptation is poorly understood. Here we investigate the role of mutators in epidemiology and evolution of the broad host pathogen, Streptococcus iniae, employing 80 strains isolated globally over 40 years. We determine phylogenetic relationship among S. iniae using 10,267 non-recombinant core genome single nucleotide polymorphisms (SNPs), estimate their mutation rate by fluctuation analysis, and detect variation in major MMR (mutS, mutL, dnaN, recD2, rnhC) and OG (mutY, mutM, mutX) genes. S. iniae mutation rate phenotype and genotype are strongly associated with phylogenetic diversification and variation in major streptococcal virulence determinants (capsular polysaccharide, hemolysin, cell chain length, resistance to oxidation, and biofilm formation). Furthermore, profound changes in virulence determinants observed in mammalian isolates (atypical host) and vaccine-escape isolates found in bone (atypical tissue) of vaccinated barramundi are linked to multiple MMR and OG variants and unique mutation rates. This implies that adaptation to new host taxa, new host tissue, and to immunity of a vaccinated host is promoted by mutator strains. Our findings support the importance of mutation rate dynamics in evolution of pathogenic bacteria, in particular adaptation to a drastically different immunological setting that occurs during host jump and vaccine escape events.Importance Host immune response is a powerful selective pressure that drives diversification of pathogenic microorganisms and, ultimately, evolution of new strains. Major adaptive events in pathogen evolution, such as transmission to a new host species or infection of vaccinated hosts, require adaptation to a drastically different immune landscape. Such adaptation may be favoured by hypermutable strains (or mutators) that are defective in normal DNA repair and consequently capable of generating multiple potentially beneficial and compensatory mutations. This permits rapid adjustment of virulence and antigenicity in a new immunological setting. Here we show that mutators, through mutations in DNA repair genes and corresponding shifts in mutation rate, are associated with major diversification events and virulence evolution in the broad host-range pathogen Streptococcus iniae. We show that mutators underpin infection of vaccinated hosts, transmission to new host species and the evolution of new strains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.