April 21, 2020  |  

Biochemical characterization of a novel cold-adapted agarotetraose-producing a-agarase, AgaWS5, from Catenovulum sediminis WS1-A.

Although many ß-agarases that hydrolyze the ß-1,4 linkages of agarose have been biochemically characterized, only three a-agarases that hydrolyze the a-1,3 linkages are reported to date. In this study, a new a-agarase, AgaWS5, from Catenovulum sediminis WS1-A, a new agar-degrading marine bacterium, was biochemically characterized. AgaWS5 belongs to the glycoside hydrolase (GH) 96 family. AgaWS5 consists of 1295 amino acids (140 kDa) and has the 65% identity to an a-agarase, AgaA33, obtained from an agar-degrading bacterium Thalassomonas agarivorans JAMB-A33. AgaWS5 showed the maximum activity at a pH and temperature of 8 and 40 °C, respectively. AgaWS5 showed a cold-tolerance, and it retained more than 40% of its maximum enzymatic activity at 10 °C. AgaWS5 is predicted to have several calcium-binding sites. Thus, its activity was slightly enhanced in the presence of Ca2+, and was strongly inhibited by EDTA. The Km and Vmax of AgaWS5 for agarose were 10.6 mg/mL and 714.3 U/mg, respectively. Agarose-liquefication, thin layer chromatography, and mass and NMR spectroscopic analyses demonstrated that AgaWS5 is an endo-type a-agarase that degrades agarose and mainly produces agarotetraose. Thus, in this study, a novel cold-adapted GH96 agarotetraose-producing a-agarase was identified.


April 21, 2020  |  

Complete genome of Pseudomonas sp. DMSP-1 isolated from the Arctic seawater of Kongsfjorden, Svalbard

The genus Pseudomonas is highly metabolically diverse and has colonized a wide range of ecological niches. The strain Pseudomonas sp. DMSP-1 was isolated from Arctic seawater (Kongsfjorden, Svalbard) using dimethylsulfoniopropionate (DMSP) as the sole carbon source. To better understand its role in the Arctic coastal ecosystem, the genome of Pseudomonas sp. strain DMSP-1 was completely sequenced. The genome contained a circular chromosome of 6,282,445?bp with an average GC content of 60.01?mol%. A total of 5510 protein coding genes, 70 tRNA genes and 19 rRNA genes were obtained. However, no genes encoding known enzymes associated with DMSP catabolism were identified in the genome, suggesting that novel DMSP degradation genes might exist in Pseudomonas sp. strain DMSP-1.


April 21, 2020  |  

Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3.

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ?ORF 0934, ?ORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ?ORF 0934 and ?ORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ?ORF 0934, ?ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


April 21, 2020  |  

Identification of Virulence-Associated Properties by Comparative Genome Analysis of Streptococcus pneumoniae, S. pseudopneumoniae, S. mitis, Three S. oralis Subspecies, and S. infantis.

From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.IMPORTANCEStreptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.Copyright © 2019 Kilian and Tettelin.


April 21, 2020  |  

Aquella oligotrophica gen. nov. sp. nov.: A new member of the family Neisseriaceae isolated from laboratory tap water.

A bacterial strain designated as P08T was isolated from laboratory tap water during a water quality assessment in University of Malaya, Malaysia. The strain was a Gram-negative, rod-shaped, nonmotile, and aerobic bacterium. Complete genome of P08T comprised of a 2,820,660 bp chromosome with a G + C content of 36.43%. Both 16S rRNA phylogeny and phylogenetic tree inferred from the core gene matrix demonstrated that P08T formed a hitherto unknown subline within the family Neisseriaceae. Ortho average nucleotide identity (OrthoANI) values and the percentage of conserved proteins (POCP) calculated from complete genome sequence indicated low relatedness between P08T and its phylogenetic neighbors. Respiratory quinone analysis revealed Q-8 as the only detectable quinone. The predominant cellular fatty acids were identified as C14:0 , iso-C15:0 , and summed feature 3 (C16:1 ?7c/C16:1 ?6c). The polar lipids consisted of uncharacterized aminolipid, phosphatidylglycerol, and phosphatidylethanolamine. All aspects of phenotypic and phylogenetic data suggested that strain P08T represents a novel genus within family Neisseriaceae, for which the name Aquella gen. nov. is proposed. The type species of the genus is Aquella oligotrophica sp. nov., and the type strain is P08T (=LMG 29629T =DSM 100970T ). © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides.

Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.


April 21, 2020  |  

Streptococcus periodonticum sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion.

A novel facultative anaerobic and Gram-stain-positive coccus, designated strain ChDC F135T, was isolated from human subgingival dental plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene (16S rDNA) sequence of strain ChDC F135T was closest to that of Streptococcus sinensis HKU4T (98.2%), followed by Streptococcus intermedia SK54T (97.0%), Streptococcus constellatus NCTC11325T (96.0%), and Streptococcus anginosus NCTC 10713T (95.7%). In contrast, phylogenetic analysis based on the superoxide dismutase gene (sodA) and the RNA polymerase beta-subunit gene (rpoB) showed that the nucleotide sequence similarities of strain ChDC F135T were highly similar to the corresponding genes of S. anginosus NCTC 10713T (99.2% and 97.6%, respectively), S. constellatus NCTC11325T (87.8% and 91.4%, respectively), and S. intermedia SK54T (85.8% and 91.2%, respectively) rather than those of S. sinensis HKU4T (80.5% and 82.6%). The complete genome of strain ChDC F135T consisted of 1,901,251 bp and the G+C content was 38.9 mol %. Average nucleotide identity value between strain ChDC F135T and S. sinensis HKU4T or S. anginosus NCTC 10713T were 75.7% and 95.6%, respectively. The C14:0 composition of the cellular fatty acids of strain ChDC F135T (32.8%) was different from that of S. intermedia (6-8%), S. constellatus (6-13%), and S. anginosus (13-20%). Based on the results of phylogenetic and phenotypic analysis, strain ChDC F135T (=?KCOM 2412T?=?JCM 33300T) was classified as a type strain of a novel species of the genus Streptococcus, for which we proposed the name Streptococcus periodonticum sp. nov.


April 21, 2020  |  

Streptococcus gwangjuense sp. nov., Isolated from Human Pericoronitis.

A novel facultative anaerobic, Gram-stain-negative coccus, designated strain ChDC B345T, was isolated from human pericoronitis lesion and was characterized by polyphasic taxonomic analysis. The 16S ribosomal RNA gene (16S rDNA) sequence revealed that the strain belonged to the genus Streptococcus. The 16S rDNA sequence of strain ChDC B345T was most closely related to those of  Streptococcus mitis NCTC 12261T (99.5%) and Streptococcus pseudopneumoniae ATCC BAA-960T (99.5%). Complete genome of strain ChDC B345T was 1,972,471 bp in length and the G?+?C content was 40.2 mol%. Average nucleotide identity values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 92.17% and 93.63%, respectively. Genome-to-genome distance values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 47.8% (45.2-50.4%) and 53.0% (51.0-56.4%), respectively. Based on these results, strain ChDC B345T (=?KCOM 1679T?=?JCM 33299T) should be classified as a novel species of genus Streptococcus, for which we propose the name Streptococcus gwangjuense sp. nov.


April 21, 2020  |  

eIF5B gates the transition from translation initiation to elongation.

Translation initiation determines both the quantity and identity of the protein that is encoded in an mRNA by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors prepare ribosomes for polypeptide synthesis; however, the underlying dynamics of this process remain unclear1,2. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here we use in vitro single-molecule fluorescence microscopy approaches in a purified yeast Saccharomyces cerevisiae translation system to monitor directly, in real time, the pathways of late translation initiation and the transition to elongation. This transition was slower in our eukaryotic system than that reported for Escherichia coli3-5. The slow entry to elongation was defined by a long residence time of eukaryotic initiation factor 5B (eIF5B) on the 80S ribosome after the joining of individual ribosomal subunits-a process that is catalysed by this universally conserved initiation factor. Inhibition of the GTPase activity of eIF5B after the joining of ribosomal subunits prevented the dissociation of eIF5B from the 80S complex, thereby preventing elongation. Our findings illustrate how the dissociation of eIF5B serves as a kinetic checkpoint for the transition from initiation to elongation, and how its release may be governed by a change in the conformation of the ribosome complex that triggers GTP hydrolysis.


April 21, 2020  |  

Complete genome sequence of the novel agarolytic Catenovulum-like strain CCB-QB4

Members of the genus Catenovulum are recognized for their ability to degrade algal biomass. Here we report the complete genome of Cantenovulum–like strain CCB-QB4, an agarolytic bacterium isolated from the coastal area of Penang, Malaysia. The sequenced genome is composed of a 5,663,044?bp circular chromosome and a 208,085?bp circular plasmid. It contained 4409 protein coding and 83 RNA genes, including 62 tRNAs and 21 rRNAs. The genome of CCB-QB4 contains many agarases, which correlate with the high capacity of the strain to degrade agar. Genome sequencing of CCB-QB4 reveals gene candidates of potential interest in enzymatic industries or applications in the field of polysaccharides degradation.


April 21, 2020  |  

Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential.

Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824?bp circular chromosome and a plasmid of 371,027?bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Nephromyces encodes a urate metabolism pathway and predicted peroxisomes, demonstrating that these are not ancient losses of apicomplexans.

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.


April 21, 2020  |  

Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium Aphanothece sacrum (Suizenji Nori).

The clonal strains, phycoerythrin(PE)-rich- and PE-poor strains, of the unicellular, fresh water cyanobacterium Aphanothece sacrum (Suringar) Okada (Suizenji Nori, in Japanese) were isolated from traditional open-air aquafarms in Japan. A. sacrum appeared to be oligotrophic on the basis of its growth characteristics. The optimum temperature for growth was around 20°C. Maximum growth and biomass increase at 20°C was obtained under light intensities between 40 to 80 µmol m-2 s-1 (fluorescent lamps, 12 h light/12 h dark cycles) and between 40 to 120 µmol m-2 s-1 for PE-rich and PE-poor strains, respectively, of A. sacrum . Purified exopolysaccharide (EPS) of A. sacrum has a molecular weight of ca. 104 kDa with five major monosaccharides (glucose, xylose, rhamnose, galactose and mannose; =85 mol%). We also deciphered the whole genome sequence of the two strains of A. sacrum. The putative genes involved in the polymerization, chain length control, and export of EPS would contribute to understand the biosynthetic process of their extremely high molecular weight EPS. The putative genes encoding Wzx-Wzy-Wzz- and Wza-Wzb-Wzc were conserved in the A. sacrum strains FPU1 and FPU3. This result suggests that the Wzy-dependent pathway participates in the EPS production of A. sacrum.


April 21, 2020  |  

RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale.

RAre DAmage and Repair sequencing (RADAR-seq) is a highly adaptable sequencing method that enables the identification and detection of rare DNA damage events for a wide variety of DNA lesions at single-molecule resolution on a genome-wide scale. In RADAR-seq, DNA lesions are replaced with a patch of modified bases that can be directly detected by Pacific Biosciences Single Molecule Real-Time (SMRT) sequencing. RADAR-seq enables dynamic detection over a wide range of DNA damage frequencies, including low physiological levels. Furthermore, without the need for DNA amplification and enrichment steps, RADAR-seq provides sequencing coverage of damaged and undamaged DNA across an entire genome. Here, we use RADAR-seq to measure the frequency and map the location of ribonucleotides in wild-type and RNaseH2-deficient E. coli and Thermococcus kodakarensis strains. Additionally, by tracking ribonucleotides incorporated during in vivo lagging strand DNA synthesis, we determined the replication initiation point in E. coli, and its relation to the origin of replication (oriC). RADAR-seq was also used to map cyclobutane pyrimidine dimers (CPDs) in Escherichia coli (E. coli) genomic DNA exposed to UV-radiation. On a broader scale, RADAR-seq can be applied to understand formation and repair of DNA damage, the correlation between DNA damage and disease initiation and progression, and complex biological pathways, including DNA replication.Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.


April 21, 2020  |  

Oenococcus sicerae sp. nov., isolated from French cider.

Two Gram-stain-positive, small ellipsoidal cocci, non-motile, oxidase- and catalase-negative, and facultative anaerobic strains (UCMA15228T and UCMA17102) were isolated in France, from fermented apple juices (ciders). The 16S rRNA gene sequence was identical between the two isolates and showed 97 % similarity with respect to the closest related species Oenococcus oeni and O. kitaharae. Therefore, the two isolates were classified within the genus Oenococcus. The phylogeny based on the pheS gene sequences also confirmed the position of the new taxon. DNA-DNA hybridizations based on in silico genome-to-genome comparisons (GGDC) and Average Nucleotide Identity (ANI) values, as well as species-specific PCR, validated the novelty of the taxon. Various phenotypic characteristics such as the optimum temperature and pH for growth, the ability to metabolise sugars, the aptitude to perform the malolactic fermentation, and the resistance to ethanol and NaCl, revealed that the two strains are distinguishable from the other members of the Oenococcus genus. The combined genotypic and phenotypic data support the classification of strains UCMA15228T and UCMA17102 into a novel species of Oenococcus, for which the name O. sicerae sp. nov. is proposed. The type strain is UCMA15228T (=DSM107163T=CIRM-BIA2288T).Copyright © 2018 Elsevier GmbH. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.