fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

Sequencing and de novo assembly of the 17q21.31 disease associated region using long reads generated by Pacific Biosciences SMRT Sequencing technology.

Assessment of genome-wide variation revealed regions of the genome with complex, structurally diverse haplotypes that are insufficiently represented in the human reference genome. The 17q21.31 region is one of the most dynamic and complex regions of the human genome. Different haplotypes exist, in direct and inverted orientation, showing evidence of positive selection and predisposing to microdeletion associated with mental retardation. Sequencing of different haplotypes is extremely important to characterize the spectrum of structural variation at this locus. However, de novo assembly with second-generation sequencing reads is still problematic. Using PacBio technology we have sequenced and de novo assembled a tiling…

Read More »

Tuesday, June 1, 2021

Genome sequencing of microbial genomes using Single Molecule Real-time sequencing (SMRT) technology.

In the last year, high-throughput sequencing technologies have progressed from proof-of-concept to production quality. Although each technology is able to produce vast quantities of sequence information, in every case the underlying chemistry limits reads to very short lengths. We present a examining de novo assembly comparison with bacterial genome assembly varying genome size (from 3.1Mb to 7.6Mb) and different G+C contents (from 43% to 71%), respectively. We analyzed Solexa reads, 454 reads and Pacbio RS reads from Streptomyces sp. (Genome size, 7.6 Mb; G+C content, 71%), Psychrobacter sp. (Genome size, 3.5 Mb; G+C content, 43%), Salinibacterium sp. (Genome size, 3.1…

Read More »

Tuesday, June 1, 2021

Advances in sequence consensus and clustering algorithms for effective de novo assembly and haplotyping applications.

One of the major applications of DNA sequencing technology is to bring together information that is distant in sequence space so that understanding genome structure and function becomes easier on a large scale. The Single Molecule Real Time (SMRT) Sequencing platform provides direct sequencing data that can span several thousand bases to tens of thousands of bases in a high-throughput fashion. In contrast to solving genomic puzzles by patching together smaller piece of information, long sequence reads can decrease potential computation complexity by reducing combinatorial factors significantly. We demonstrate algorithmic approaches to construct accurate consensus when the differences between reads…

Read More »

Tuesday, June 1, 2021

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens.

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single-nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non- pathogenic to pathogenic…

Read More »

Tuesday, June 1, 2021

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic…

Read More »

Tuesday, June 1, 2021

Genomic Architecture of the KIR and MHC-B and -C Regions in Orangutan

PacBio 2013 User Group Meeting Presentation Slides: Lisbeth Guethlein from Stanford University School of Medicine looked at highly repetitive and variable immune regions of the orangutan genome. Guethlein reported that “PacBio managed to accomplish in a week what I have been working on for a couple years” (with Sanger sequencing), and the results were concordant. “Long story short, I was a happy customer.”

Read More »

Tuesday, June 1, 2021

SMRT Sequencing solutions for large genomes and transcriptomes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers in large genome complexities, such as long, highly repetitive, low-complexity regions and duplication events, and differentiating between transcript isoforms that are difficult to resolve with short-read technologies. We present solutions available for both reference genome improvement (>100 MB) and transcriptome research to best leverage long reads that have exceeded 20 Kb in length. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. Highlights from our genome assembly projects using the latest P5-C3 chemistry on model organisms…

Read More »

Tuesday, June 1, 2021

Isoform sequencing: Unveiling the complex landscape in eukaryotic transcriptome on the PacBio RS II.

Advances in RNA sequencing have accelerated our understanding of the transcriptome, however isoform discovery remains challenging due to short read lengths. The Iso-Seq Application provides a new alternative to sequence full-length cDNA libraries using long reads from the PacBio RS II. Identification of long and often rare isoforms is demonstrated with rat heart and lung RNA prepared using the Clontech® SMARTer® cDNA preparation kit, followed by agarose-gel size selection in fractions of 1-2 kb, 2-3 kb and 3-6 kb. For each tissue, 1.8 and 1.2 million reads were obtained from 32 and 26 SMRT Cells, respectively. Filtering for reads with…

Read More »

Tuesday, June 1, 2021

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes…

Read More »

Tuesday, June 1, 2021

Resolving the ‘dark matter’ in genomes.

Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.

Read More »

Tuesday, June 1, 2021

The use of PacBio and Hi-C data in de novo assembly of the goat genome.

Generating de novo reference genome assemblies for non-model organisms is a laborious task that often requires a large amount of data from several sequencing platforms and cytogenetic surveys. By using PacBio sequence data and new library creation techniques, we present a de novo, high quality reference assembly for the goat (Capra hircus) that demonstrates a primarily sequencing-based approach to efficiently create new reference assemblies for Eukaryotic species. This goat reference genome was created using 38 million PacBio P5-C3 reads generated from a San Clemente goat using the Celera Assembler PBcR pipeline with PacBio read self-correction. In order to generate the…

Read More »

Tuesday, June 1, 2021

Draft genome of horseweed illuminates expansion of gene families that might endow herbicide resistance.

Conyza canadensis (horseweed), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n=2X=18) with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic basis of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000 and PacBio RS) using various libraries with different insertion sizes (~350 bp, ~600 bp, ~3…

Read More »

1 2 3 17

Subscribe for blog updates:

Archives