fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of the polymyxin E (colistin)-producing Paenibacillus sp. strain B-LR.

Paenibacillus bacteria are recovered from varied niches, including human lung, rhizosphere, marine sediments, and hemolymph. Paenibacilli can have plant growth-promoting activities and be antibiotic producers. They can produce exopolysaccharides and enzymes of industrial interest. Illumina and PacBio reads were used to produce a complete genome sequence of the colistin producer Paenibacillus sp. strain B-LR.

Read More »

Sunday, July 7, 2019

The ß-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae.

In this work, by high-throughput sequencing, antibiotic resistance genes, including class A (blaCTX-M, blaZ, blaTEM, blaVEB, blaKLUC, and blaSFO), class C (blaSHV, blaDHA, blaMIR, blaAZECL-29, and blaACT), and class D (blaOXA) ß-lactamase genes, were identified among the pooled genomic DNA from 212 clinical Enterobacter cloacae isolates. Six blaMIR-positive E. cloacae strains were identified, and pulsed-field gel electrophoresis (PFGE) showed that these strains were not clonally related. The complete genome of the blaMIR-positive strain (Y546) consisted of both a chromosome (4.78?Mb) and a large plasmid pY546 (208.74?kb). The extended-spectrum ß-lactamases (ESBLs) (blaSHV-12 and blaCTX-M-9a) and AmpC (blaMIR) were encoded on the…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Olsenella sp. KGMB 04489 isolated from healthy Korean human feces

The genus of Olsenella has been isolated from vertebrate animal mouth, rumen, and feces. Olsenella sp. KGMB 04489 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Olsenella sp. KGMB 04489 was analyzed using the PacBio Sequel platform. The genome comprises a 2,108,034 bp chromosome with a G + C content of 65.50%, 1,838 total genes, 13 rRNA genes, and 52 tRNA genes. Also, we found that strain KGMB 04489 had some genes for hydrolysis enzymes, and antibiotic biosynthesis and resistance in its genome based on the result of genome analysis.

Read More »

Sunday, July 7, 2019

Bridging gaps in transposable element research with single-molecule and single-cell technologies

More than half of the genomic landscape in humans and many other organisms is composed of repetitive DNA, which mostly derives from transposable elements (TEs) and viruses. Recent technological advances permit improved assessment of the repetitive content across genomes and newly developed molecular assays have revealed important roles of TEs and viruses in host genome evolution and organization. To update on our current understanding of TE biology and to promote new interdisciplinary strategies for the TE research community, leading experts gathered for the 2nd Uppsala Transposon Symposium on October 4–5, 2018 in Uppsala, Sweden. Using cutting-edge single-molecule and single-cell approaches,…

Read More »

Sunday, July 7, 2019

Hardwood tree genomics: Unlocking woody plant biology.

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while…

Read More »

Sunday, July 7, 2019

Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of Hypericum perforatum

Hypericum perforatum is a widely known medicinal herb used mostly as a remedy for depression because of its abundant secondary metabolites. Quantitative real-time PCR (qRT-PCR) is an optimized method for the efficient and reliable quantification of gene expression studies. In general, reference genes are used in qRT-PCR analysis because of their known or suspected housekeeping roles. However, their expression level cannot be assumed to remain stable under all possible experimental conditions. Thus, the identification of high quality reference genes is very necessary for the interpretation of qRT-PCR data. In this study, we investigated the expression of fourteen candidate genes, including…

Read More »

Sunday, July 7, 2019

De novo genome assembly of the olive fruit fly (Bactrocera oleae) developed through a combination of linked-reads and long-read technologies

Long-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also…

Read More »

Sunday, July 7, 2019

Small- and Large-Scale High Molecular Weight Genomic DNA Extraction from Planarians.

High-quality genomic DNA extraction is a starting point for many downstream applications in modern molecular biology. Here, we describe a simple method for isolating high molecular weight genomic DNA from planarians. The method is based on tissue lysis by a mixture of a chaotropic salt and detergent followed by organic extraction to remove proteins and lipids followed by a postpurification step to remove contaminating polysaccharides. The isolated DNA is of high molecular weight and compatible with polymerase chain reaction, cloning, or next-generation sequencing library preparation.

Read More »

Sunday, July 7, 2019

The Draft Genome of the MD-2 Pineapple

The main challenge in assembling plant genome is its ploidy level, repeats content, and polymorphism. The second-generation sequencing delivered the throughput and the accuracy that is crucial to whole-genome sequencing but insufficient and remained challenging for some plant species. It is known that genomes produced by next-gen- eration sequencing produced small contigs that would inflate the number of annotated genes (Varshney et al. 2011) and missed on the transposable elements that are abun- dant in plant genome due to their repetitive nature (Michael and Jackson 2013).

Read More »

Monday, January 23, 2017

Tutorial: HGAP4 de novo assembly application

This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable for assembling a wide range of genome sizes and complexity. HGAP4 now includes some support for diploid-aware assembly.

Read More »

Monday, January 23, 2017

Tutorial: Long Amplicon Analysis application

This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes.

Read More »

Monday, January 23, 2017

Tutorial: Iso-Seq analysis application

This tutorial provides an overview of the Isoform Sequencing (Iso-Seq) analysis application. The Iso-Seq application provides reads that span entire transcript isoforms, from the 5′ end to the 3′ polyA-tail. Generation of accurate, full-length transcript sequences greatly simplifies analysis by eliminating the need for transcript reconstruction to infer isoforms using error-prone assembly of short RNA-seq reads.

Read More »

1 275 276 277

Subscribe for blog updates:

Archives