X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria.

Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking…

Read More »

Sunday, September 22, 2019

Gene duplication and evolution dynamics in the homeologous regions harboring multiple prolamin and resistance gene families in hexaploid wheat.

Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large…

Read More »

Sunday, September 22, 2019

HapCHAT: adaptive haplotype assembly for efficiently leveraging high coverage in long reads.

Haplotype assembly is the process of assigning the different alleles of the variants covered by mapped sequencing reads to the two haplotypes of the genome of a human individual. Long reads, which are nowadays cheaper to produce and more widely available than ever before, have been used to reduce the fragmentation of the assembled haplotypes since their ability to span several variants along the genome. These long reads are also characterized by a high error rate, an issue which may be mitigated, however, with larger sets of reads, when this error rate is uniform across genome positions. Unfortunately, current state-of-the-art…

Read More »

Sunday, September 22, 2019

Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections.

Staphylococcus aureus can cause wide range of infections from simple soft skin infections to severe endocarditis, bacteremia, osteomyelitis and implant associated bone infections (IABI). The focus of the present investigation was to study virulence properties of S. aureus isolates from acute and chronic IABI by means of their in vivo lethality, in vitro osteoblasts invasion, biofilm formation and subsequently whole genome comparison between high and low virulent strains. Application of insect infection model Galleria mellonella revealed high, intermediate and low virulence phenotypes of these clinical isolates, which showed good correlation with osteoblast invasion and biofilm formation assays. Comparative genomics of…

Read More »

Sunday, September 22, 2019

A graph-based approach to diploid genome assembly.

Constructing high-quality haplotype-resolved de novo assemblies of diploid genomes is important for revealing the full extent of structural variation and its role in health and disease. Current assembly approaches often collapse the two sequences into one haploid consensus sequence and, therefore, fail to capture the diploid nature of the organism under study. Thus, building an assembler capable of producing accurate and complete diploid assemblies, while being resource-efficient with respect to sequencing costs, is a key challenge to be addressed by the bioinformatics community.We present a novel graph-based approach to diploid assembly, which combines accurate Illumina data and long-read Pacific Biosciences…

Read More »

Sunday, September 22, 2019

Genotype-Corrector: improved genotype calls for genetic mapping in F2 and RIL populations.

F2 and recombinant inbred lines (RILs) populations are very commonly used in plant genetic mapping studies. Although genome-wide genetic markers like single nucleotide polymorphisms (SNPs) can be readily identified by a wide array of methods, accurate genotype calling remains challenging, especially for heterozygous loci and missing data due to low sequencing coverage per individual. Therefore, we developed Genotype-Corrector, a program that corrects genotype calls and imputes missing data to improve the accuracy of genetic mapping. Genotype-Corrector can be applied in a wide variety of genetic mapping studies that are based on low coverage whole genome sequencing (WGS) or Genotyping-by-Sequencing (GBS)…

Read More »

Sunday, September 22, 2019

npInv: accurate detection and genotyping of inversions using long read sub-alignment.

Detection of genomic inversions remains challenging. Many existing methods primarily target inzversions with a non repetitive breakpoint, leaving inverted repeat (IR) mediated non-allelic homologous recombination (NAHR) inversions largely unexplored.We present npInv, a novel tool specifically for detecting and genotyping NAHR inversion using long read sub-alignment of long read sequencing data. We benchmark npInv with other tools in both simulation and real data. We use npInv to generate a whole-genome inversion map for NA12878 consisting of 30 NAHR inversions (of which 15 are novel), including all previously known NAHR mediated inversions in NA12878 with flanking IR less than 7kb. Our genotyping…

Read More »

Sunday, September 22, 2019

Validation of Genomic Structural Variants Through Long Sequencing Technologies.

Although numerous algorithms have been developed to identify large chromosomal rearrangements (i.e., genomic structural variants, SVs), there remains a dearth of approaches to evaluate their results. This is significant, as the accurate identification of SVs is still an outstanding problem whereby no single algorithm has been shown to be able to achieve high sensitivity and specificity across different classes of SVs. The method introduced in this chapter, VaPoR, is specifically designed to evaluate the accuracy of SV predictions using third-generation long sequences. This method uses a recurrence approach and collects direct evidence from raw reads thus avoiding computationally costly whole…

Read More »

Sunday, September 22, 2019

Human copy number variants are enriched in regions of low mappability.

Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately…

Read More »

Sunday, September 22, 2019

A synthetic-diploid benchmark for accurate variant-calling evaluation.

Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two fully homozygous human cell lines, which provides a relatively more accurate and less biased estimate of small-variant-calling error rates in a realistic context.

Read More »

Sunday, September 22, 2019

Conservation genomics of the declining North American bumblebee Bombus terricola reveals inbreeding and selection on immune genes.

The yellow-banded bumblebee Bombus terricola was common in North America but has recently declined and is now on the IUCN Red List of threatened species. The causes of B. terricola’s decline are not well understood. Our objectives were to create a partial genome and then use this to estimate population data of conservation interest, and to determine whether genes showing signs of recent selection suggest a specific cause of decline. First, we generated a draft partial genome (contig set) for B. terricola, sequenced using Pacific Biosciences RS II at an average depth of 35×. Second, we sequenced the individual genomes…

Read More »

Sunday, September 22, 2019

First draft genome assembly of the Argane tree (Argania spinosa)

Background: The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. Methods: Here, we present a draft genome assembly…

Read More »

Sunday, September 22, 2019

Prevalence and genomic structure of bacteriophage phi3 in human derived livestock-associated MRSA from 2000 to 2015.

Whereas the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex 398 (CC398) in animal husbandry and its transmission to humans are well documented, less is known about factors driving the epidemic spread of this zoonotic lineage within the human population. One factor could be the bacteriophage phi3, which is rarely detected in S. aureus isolates from animals but commonly found among isolates from humans, including those of the human-adapted methicillin-susceptible S. aureus (MSSA) CC398 clade. The proportion of phi3-carrying MRSA spa-CC011 isolates, which constitute presumptively LA-MRSA within the multilocus sequence type (MLST) clonal complex 398, was systematically assessed for…

Read More »

Sunday, September 22, 2019

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.

Read More »

Sunday, September 22, 2019

Parliament2: Fast structural variant calling using optimized combinations of callers

Here we present Parliament2: a structural variant caller which combines multiple best-in-class structural variant callers to create a highly accurate callset. This captures more events than the individual callers achieve independently. Parliament2 uses a call-overlap-genotype approach that is highly extensible to new methods and presents users the choice to run some or all of Breakdancer, Breakseq, CNVnator, Delly, Lumpy, and Manta to run. Parliament2 applies an additional parallelization framework to speed certain callers and executes these in parallel, taking advantage of the different resource requirements to complete structural variant calling much faster than running the programs individually. Parliament2 is available…

Read More »

1 2 3 4 5 10

Subscribe for blog updates:

Archives