fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

A high throughput screen for active human transposable elements.

Transposable elements (TEs) are mobile genetic sequences that randomly propagate within their host’s genome. This mobility has the potential to affect gene transcription and cause disease. However, TEs are technically challenging to identify, which complicates efforts to assess the impact of TE insertions on disease. Here we present a targeted sequencing protocol and computational pipeline to identify polymorphic and novel TE insertions using next-generation sequencing: TE-NGS. The method simultaneously targets the three subfamilies that are responsible for the majority of recent TE activity (L1HS, AluYa5/8, and AluYb8/9) thereby obviating the need for multiple experiments and reducing the amount of input…

Read More »

Sunday, July 7, 2019

Current advances in genome sequencing of common wheat and its ancestral species

Common wheat is an important and widely cultivated food crop throughout the world. Much progress has been made in regard to wheat genome sequencing in the last decade. Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.

Read More »

Sunday, July 7, 2019

A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA

During DNA extraction the DNA molecule undergoes physical and chemical shearing, causing the DNA to fragment into shorter and shorter pieces. Under common laboratory conditions this fragmentation yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is more than sufficient for DNA sequencing using short-read technologies which generate reads 50-600 bp in length, but insufficient for long-read sequencing and linked reads where fragment lengths of more than 40 kb may be desirable. This study provides a theoretical framework for quality management to ensure access to high molecular weight DNA in samples. Shearing can be divided into physical…

Read More »

Sunday, July 7, 2019

scanPAV: a pipeline for extracting presence-absence variations in genome pairs.

The recent technological advances in genome sequencing techniques have resulted in an exponential increase in the number of sequenced human and non-human genomes. The ever increasing number of assemblies generated by novel de novo pipelines and strategies demands the development of new software to evaluate assembly quality and completeness. One way to determine the completeness of an assembly is by detecting its Presence-Absence variations (PAV) with respect to a reference, where PAVs between two assemblies are defined as the sequences present in one assembly but entirely missing in the other one. Beyond assembly error or technology bias, PAVs can also…

Read More »

Sunday, July 7, 2019

FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods.

Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27 deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE .

Read More »

Sunday, July 7, 2019

ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.

The long-range sequencing information captured by linked reads, such as those available from 10× Genomics (10xG), helps resolve genome sequence repeats, and yields accurate and contiguous draft genome assemblies. We introduce ARKS, an alignment-free linked read genome scaffolding methodology that uses linked reads to organize genome assemblies further into contiguous drafts. Our approach departs from other read alignment-dependent linked read scaffolders, including our own (ARCS), and uses a kmer-based mapping approach. The kmer mapping strategy has several advantages over read alignment methods, including better usability and faster processing, as it precludes the need for input sequence formatting and draft sequence…

Read More »

Sunday, July 7, 2019

GtTR: Bayesian estimation of absolute tandem repeat copy number using sequence capture and high throughput sequencing.

Tandem repeats comprise significant proportion of the human genome including coding and regulatory regions. They are highly prone to repeat number variation and nucleotide mutation due to their repetitive and unstable nature, making them a major source of genomic variation between individuals. Despite recent advances in high throughput sequencing, analysis of tandem repeats in the context of complex diseases is still hindered by technical limitations. We report a novel targeted sequencing approach, which allows simultaneous analysis of hundreds of repeats. We developed a Bayesian algorithm, namely – GtTR – which combines information from a reference long-read dataset with a short…

Read More »

Sunday, July 7, 2019

Meeting report: mobile genetic elements and genome plasticity 2018

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A…

Read More »

Sunday, July 7, 2019

Genomics, GPCRs and new targets for the control of insect pests and vectors.

The pressing need for new pest control products with novel modes of action has spawned interest in small molecules and peptides targeting arthropod GPCRs. Genome sequence data and tools for reverse genetics have enabled the prediction and characterization of GPCRs from many invertebrates. We review recent work to identify, characterize and de-orphanize arthropod GPCRs, with a focus on studies that reveal exciting new functional roles for these receptors, including the regulation of metabolic resistance. We explore the potential for insecticides targeting Class A biogenic amine-binding and peptide-binding receptors, and consider the innovation required to generate pest-selective leads for development, within…

Read More »

Sunday, July 7, 2019

New variant of multidrug-resistant Salmonella enterica serovar Typhimurium associated with invasive disease in immunocompromised patients in Vietnam.

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar Typhimurium, is among the leading etiologic agents of bacterial enterocolitis globally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa. In contrast, S Typhimurium is poorly defined in Southeast Asia, a known hot spot for zoonotic disease with a recently described burden of iNTS disease. Here, we aimed to add insight into the epidemiology and potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S Typhimurium associated with iNTS and enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S Typhimurium isolates…

Read More »

Sunday, July 7, 2019

Genomic features of the Helicobacter pylori strain PMSS1 and its virulence attributes as deduced from its in vivo colonisation patterns.

The human gastric pathogen Helicobacter pylori occurs in two basic variants, either exhibiting a functional cagPAI-encoded type-4-secretion-system (T4SS) or not. Only a few cagPAI-positive strains have been successfully adapted for long-term infection of mice, including the pre-mouse Sydney strain 1 (PMSS1). Here we confirm that PMSS1 induces gastric inflammation and neutrophil infiltration in mice, progressing to intestinal metaplasia. Complete genome analysis of PMSS1 revealed 1,423 coding sequences, encompassing the cagPAI gene cluster and, unusually, the location of the cytotoxin-associated gene A (cagA) approximately 15 kb downstream of the island. PMSS1 harbours three genetically exchangeable loci that are occupied by the…

Read More »

Sunday, July 7, 2019

Recombination hotspots in an extended human pseudoautosomal domain predicted from double-strand break maps and characterized by sperm-based crossover analysis.

The human X and Y chromosomes are heteromorphic but share a region of homology at the tips of their short arms, pseudoautosomal region 1 (PAR1), that supports obligate crossover in male meiosis. Although the boundary between pseudoautosomal and sex-specific DNA has traditionally been regarded as conserved among primates, it was recently discovered that the boundary position varies among human males, due to a translocation of ~110 kb from the X to the Y chromosome that creates an extended PAR1 (ePAR). This event has occurred at least twice in human evolution. So far, only limited evidence has been presented to suggest…

Read More »

Sunday, July 7, 2019

iMGEins: detecting novel mobile genetic elements inserted in individual genomes.

Recent advances in sequencing technology have allowed us to investigate personal genomes to find structural variations, which have been studied extensively to identify their association with the physiology of diseases such as cancer. In particular, mobile genetic elements (MGEs) are one of the major constituents of the human genomes, and cause genome instability by insertion, mutation, and rearrangement.We have developed a new program, iMGEins, to identify such novel MGEs by using sequencing reads of individual genomes, and to explore the breakpoints with the supporting reads and MGEs detected. iMGEins is the first MGE detection program that integrates three algorithmic components:…

Read More »

Sunday, July 7, 2019

Bridging gaps in transposable element research with single-molecule and single-cell technologies

More than half of the genomic landscape in humans and many other organisms is composed of repetitive DNA, which mostly derives from transposable elements (TEs) and viruses. Recent technological advances permit improved assessment of the repetitive content across genomes and newly developed molecular assays have revealed important roles of TEs and viruses in host genome evolution and organization. To update on our current understanding of TE biology and to promote new interdisciplinary strategies for the TE research community, leading experts gathered for the 2nd Uppsala Transposon Symposium on October 4–5, 2018 in Uppsala, Sweden. Using cutting-edge single-molecule and single-cell approaches,…

Read More »

1 8 9 10

Subscribe for blog updates:

Archives