June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. One popular, efficient method of profiling communities is to amplify and sequence the evolutionarily conserved 16S rRNA sequence. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost and species-level classification is often not possible. SMRT Sequencing easily spans the entire 1.5 kb 16S gene, and in combination with highly-accurate single-molecule sequences, can improve the identification of individual species in a metapopulation. However, when amplifying a mixture of sequences with close similarities, the products may contain chimeras, or recombinant molecules, at rates as high as 20-30%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of productive sequences. We investigated multiple factors that have been hypothesized to contribute to chimera formation, such as template damage, denaturing time before and during cycling, polymerase extension time, and reaction volume. Of the factors tested, we found two major related contributors to chimera formation: the amount of input template into the PCR reaction and the number of PCR cycles. Sequence errors generated during amplification and sequencing can also confound the analysis of complex populations. Circular Consensus Sequencing (CCS) can generate single-molecule reads with >99% accuracy, and the SMRT Analysis software provides filtering of these reads to >99.99% accuracies. Remaining substitution errors in these highly-filtered reads are likely dominated by mis-incorporations during amplification. Therefore, we compared the impact of several commercially-available high-fidelity PCR kits with full-length 16S amplification. We show results of our experiments and describe an optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and to generate highly accurate reference sequences.


June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. Amplification and sequencing of the evolutionarily conserved 16S rRNA gene is an efficient method of profiling communities. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost, and species-level classification is often not possible. PacBio SMRT Sequencing easily spans the entire 1.5 kb 16S gene in a single read, producing highly accurate single-molecule sequences that can improve the identification of individual species in a metapopulation.However, this process still relies upon PCR amplification from a mixture of similar sequences, which may result in chimeras, or recombinant molecules, at rates upwards of 20%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of informative sequences. We investigated multiple factors that may contribute to chimera formation, such as template damage, denaturation time before and during thermocycling, polymerase extension time, and reaction volume. We found two related factors that contribute to chimera formation: the amount of input template into the PCR reaction, and the number of PCR cycles.A second problem that can confound analysis is sequence errors generated during amplification and sequencing. With the updated algorithm for circular consensus sequencing (CCS2), single-molecule reads can be filtered to 99.99% predicted accuracy. Substitution errors in these highly filtered reads may be dominated by mis-incorporations during amplification. Sequence differences in full-length 16S amplicons from several commercial high-fidelity PCR kits were compared.We show results of our experiments and describe our optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and generate highly accurate reference sequences.


June 1, 2021  |  

Multiplexed complete microbial genomes on the Sequel System

Microbes play an important role in nearly every part of our world, as they affect human health, our environment, agriculture, and aid in waste management. Complete closed genome sequences, which have become the gold standard with PacBio long-read sequencing, can be key to understanding microbial functional characteristics. However, input requirements, consumables costs, and the labor required to prepare and sequence a microbial genome have in the past put PacBio sequencing out of reach for some larger projects. We have developed a multiplexed library prep approach that is simple, fast, and cost-effective, and can produce 4 to 16 closed bacterial genomes from one Sequel SMRT Cell. Additionally, we are introducing a streamlined analysis pipeline for processing multiplexed genome sequence data through de novo HGAP assembly, making the entire process easy for lab personnel to perform. Here we present the entire workflow from shearing through assembly, with times for each step. We show HGAP assembly results with single or very few contigs from bacteria from different size genomes, sequenced without or with size selection. These data illustrate the benefits and potential of the PacBio multiplexed library prep and the Sequel System for sequencing large numbers of microbial genomes.


June 1, 2021  |  

Microbiome profiling at the strain level using rRNA amplicons

Strain level microbiome profiling is needed for a full understanding of how microbial communities influence human health. Microbiome profiling of rRNA gene amplicons is a well-understood method that is rapid and inexpensive, but standard 16S rRNA gene methods generally cannot differentiate closely related strains. Whole genome/shotgun microbiome profiling is considered a higher-resolution alternative, but with decreased throughput and significantly increased sequencing costs and analysis burden. With both methods there are also challenges with microbial lysis, DNA preparation, and taxonomic analysis. Specialized microbiome-focused protocols were developed to achieve strain-level taxonomic differentiation using a rapid, high throughput rRNA gene assay. The protocol integrates lysis and DNA preparation improvements with a unique high information content amplicon and associated novel database to enable taxonomic differentiation of closely related microbial strains.


April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei

Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here we applied three complementary whole genome sequencing (WGS) technologies to characterise a hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak isolates were sequence type (ST)90 and near-identical at the core genome level. Comparison to publicly available data unequivocally linked all 10 isolates to a 2013 isolate from the same ward, confirming the hospital environment as the most likely original source of infection in the 2015 cases. No clonal relationship was found to IMP-4-producing isolates identified from other local hospitals. However, using Pacific Biosciences long-read sequencing we were able to resolve the complete context of the blaIMP-4 gene, which was found to be on a large IncHI2 plasmid carried by all IMP-4-producing isolates. Continued surveillance of the hospital environment was carried out using Oxford Nanopore long-read sequencing, which was able to rapidly resolve the true relationship of subsequent isolates to the initial outbreak. Shotgun metagenomic sequencing of environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within the hospital plumbing.Overall, our strategic application of three WGS technologies provided an in-depth analysis of the outbreak, including the transmission dynamics of a carbapenemase-producing E. hormaechei cluster, identification of possible hospital reservoirs and the full context of blaIMP-4 on a multidrug resistant IncHI2 plasmid that appears to be widely distributed in Australia.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Morphological and genomic characterisation of the hybrid schistosome infecting humans in Europe reveals a complex admixture between Schistosoma haematobium and Schistosoma bovis parasites

Schistosomes cause schistosomiasis, the worldtextquoterights second most important parasitic disease after malaria. A peculiar feature of schistosomes is their ability to produce viable and fertile hybrids. Originally only present in the tropics, schistosomiasis is now also endemic in Europe. Based on two genetic markers the European species had been identified as a hybrid between the ruminant-infective Schistosoma bovis and the human-infective Schistosoma haematobium.Here we describe for the first time the genomic composition of the European schistosome hybrid (77% of S. haematobium and 23% of S. bovis origins), its morphometric parameters and its compatibility with the European vector snail and intermediate host Compatibility is a key parameter for the parasites life cycle progression. We also show that egg morphology (a classical diagnostic parameter) does not allow for differential diagnosis while genetic tests do so. Additionally, we performed genome assembly improvement and annotation of S. bovis, the parental species for which no satisfactory genome assembly was available.For the first time since the discovery of hybrid schistosomes, these results reveal at the whole genomic level a complex admixture of parental genomes highlighting (i) the high permeability of schistosomes to other speciestextquoteright alleles, and (ii) the importance of hybrid formation for pushing species boundaries not only conceptionally but also geographically.


April 21, 2020  |  

Complete Genome Sequence of Leuconostoc kimchii Strain NKJ218, Isolated from Homemade Kimchi.

Leuconostoc kimchii strain NKJ218 was isolated from homemade kimchi in South Korea. The whole genome was sequenced using the PacBio RS II and Illumina NovoSeq 6000 platforms. Here, we report a genome sequence of strain NKJ218, which consists of a 1.9-Mbp chromosome and three plasmid contigs. A total of 2,005 coding sequences (CDS) were predicted, including 1,881 protein-coding sequences.Copyright © 2019 Jung et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.