X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 12, 2020

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

Sunday, October 25, 2020

ASHG Virtual Poster: The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…

Read More »

Sunday, October 25, 2020

Webinar: Addressing “NGS Dead Zones” with third generation PacBio sequencing

SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.

Read More »

Sunday, October 25, 2020

Webinar: Beyond Gene Editing: How CRISPR/Cas9 enables sequencing of difficult regions of the genome

In this webinar, Jenny Ekholm and Paul Kotturi provide an overview of the PacBio No-Amp targeted sequencing application and its uses for targeting hard-to-amplify genes. This approach couples CRISPR-Cas9 with Single Molecule, Real Time (SMRT) Sequencing to enrich targets, without the need for PCR amplification, and generate complete sequence information with base-level resolution.

Read More »

Tuesday, April 21, 2020

Long-read sequencing for rare human genetic diseases.

During the past decade, the search for pathogenic mutations in rare human genetic diseases has involved huge efforts to sequence coding regions, or the entire genome, using massively parallel short-read sequencers. However, the approximate current diagnostic rate is

Read More »

Tuesday, April 21, 2020

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions…

Read More »

Tuesday, April 21, 2020

A proposed core genome scheme for analyses of the Salmonella genus.

The salmonellae are found in a wide range of animal hosts and many food products for human consumption. Most cases of human disease are caused by S. enterica subspecies I; however as opportunistic pathogens the other subspecies (II-VI) and S. bongori are capable of causing disease. Loci that were not consistently present in all of the species and subspecies were removed from a previously proposed core genome scheme (EBcgMLSTv2.0), the removal of these 252 loci resulted in a core genus scheme (SalmcgMLSTv1.0). SalmcgMLSTv1.0 clustered isolates from the same subspecies more rapidly and more accurately grouped isolates from different subspecies when…

Read More »

Tuesday, April 21, 2020

The landscape of SNCA transcripts across synucleinopathies: New insights from long reads sequencing analysis

Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both…

Read More »

Tuesday, April 21, 2020

Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population.

The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability,…

Read More »

Tuesday, April 21, 2020

Whole-genome sequence of the oriental lung fluke Paragonimus westermani.

Foodborne infections caused by lung flukes of the genus Paragonimus are a significant and widespread public health problem in tropical areas. Approximately 50 Paragonimus species have been reported to infect animals and humans, but Paragonimus westermani is responsible for the bulk of human disease. Despite their medical and economic importance, no genome sequence for any Paragonimus species is available.We sequenced and assembled the genome of P. westermani, which is among the largest of the known pathogen genomes with an estimated size of 1.1 Gb. A 922.8 Mb genome assembly was generated from Illumina and Pacific Biosciences (PacBio) sequence data, covering 84% of…

Read More »

Tuesday, April 21, 2020

The comparative genomics and complex population history of Papio baboons.

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of…

Read More »

Tuesday, April 21, 2020

Collateral damage and CRISPR genome editing.

The simplicity and the versatility of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR-Cas) systems have enabled the genetic modification of virtually every organism and offer immense therapeutic potential for the treatment of human disease. Although these systems may function efficiently within eukaryotic cells, there remain concerns about the accuracy of Cas endonuclease effectors and their use for precise gene editing. Recently, two independent reports investigating the editing accuracy of the CRISPR-Cas9 system were published by separate groups at the Wellcome Sanger Institute; our study-Iyer and colleagues [1]-defined the landscape of off-target mutations, whereas the other by Kosicki and colleagues…

Read More »

Tuesday, April 21, 2020

One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock.

Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum ß-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives