Menu
April 21, 2020  |  

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae.

Members of the major candidate phylum Dependentiae (a.k.a. TM6) are widespread across diverse environments from showerheads to peat bogs; yet, with the exception of two isolates infecting amoebae, they are only known from metagenomic data. The limited knowledge of their biology indicates that they have a long evolutionary history of parasitism. Here, we present Chromulinavorax destructans (Strain SeV1) the first isolate of this phylum to infect a representative from a widespread and ecologically significant group of heterotrophic flagellates, the microzooplankter Spumella elongata (Strain CCAP 955/1). Chromulinavorax destructans has a reduced 1.2 Mb genome that is so specialized for infection that it shows no evidence of complete metabolic pathways, but encodes an extensive transporter system for importing nutrients and energy in the form of ATP from the host. Its replication causes extensive reorganization and expansion of the mitochondrion, effectively surrounding the pathogen, consistent with its dependency on the host for energy. Nearly half (44%) of the inferred proteins contain signal sequences for secretion, including many without recognizable similarity to proteins of known function, as well as 98 copies of proteins with an ankyrin-repeat domain; ankyrin-repeats are known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus. These observations help to cement members of this phylum as widespread and diverse parasites infecting a broad range of eukaryotic microbes.


April 21, 2020  |  

A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.

The pathogenic fungus Sclerotinia sclerotiorum infects over 600 species of plant. It is present in numerous environments throughout the world and causes significant damage to many agricultural crops. Fragmentation and lack of gene flow between populations may lead to population sub-structure. Within discrete recombining populations, positive selection may lead to a ‘selective sweep’. This is characterised by an increase in frequency of a favourable allele leading to reduction in genotypic diversity in a localised genomic region due to the phenomenon of genetic hitchhiking. We aimed to assess whether isolates of S. sclerotiorum from around the world formed genotypic clusters associated with geographical origin and to determine whether signatures of population-specific positive selection could be detected. To do this, we sequenced the genomes of 25 isolates of S. sclerotiorum collected from four different continents-Australia, Africa (north and south), Europe and North America (Canada and the northen United States) and conducted SNP based analyses of population structure and selective sweeps. Among the 25 isolates, there was evidence for two major population clusters. One of these consisted of 11 isolates from Canada, the USA and France (population 1), and the other consisted of nine isolates from Australia and one from Morocco (population 2). The rest of the isolates were genotypic outliers. We found that there was evidence of outcrossing in these two populations based on linkage disequilibrium decay. However, only a single candidate selective sweep was observed, and it was present in population 2. This sweep was close to a Major Facilitator Superfamily transporter gene, and we speculate that this gene may have a role in nutrient uptake from the host. The low abundance of selective sweeps in the S. sclerotiorum genome contrasts the numerous examples in the genomes of other fungal pathogens. This may be a result of its slow rate of evolution and low effective recombination rate due to self-fertilisation and vegetative reproduction.


April 21, 2020  |  

A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes.

Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94?Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5?kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant-pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Transmission of ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids.

Ciprofloxacin resistance in Salmonella has been increasingly reported due to the emergence and dissemination of multiple Plasmid-Mediated Quinolone Resistance (PMQR) determinants, which are mainly located in non-conjugative plasmids or chromosome. In this study, we aimed to depict the molecular mechanisms underlying the rare phenomenon of horizontal transfer of ciprofloxacin resistance phenotype in Salmonella by conjugation experiments, S1-PFGE and complete plasmid sequencing. Two types of non-conjugative plasmids, namely an IncX1 type carrying a qnrS1 gene, and an IncH1 plasmid carrying the oqxAB-qnrS gene, both ciprofloxacin resistance determinants in Salmonella, were recovered from two Salmonella strains. Importantly, these non-conjugative plasmids could be fused with a novel Incl1 type conjugative helper plasmid, which could target insertion sequence (IS) elements located in the non-conjugative, ciprofloxacin-resistance-encoding plasmid through replicative transcription, eventually forming a hybrid conjugative plasmid transmissible among members of Enterobacteriaceae. Since our data showed that such conjugative helper plasmids are commonly detectable among clinical Salmonella strains, particularly S. Typhimurium, fusion events leading to generation and enhanced dissemination of conjugative ciprofloxacin resistance-encoding plasmids in Salmonella are expected to result in a sharp increase in the incidence of resistance to fluoroquinolone, the key choice for treating life-threatening Salmonella infections, thereby posing a serious public health threat.


April 21, 2020  |  

Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan.

Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3 isolated from hospital wastewater in the United States, A. hydrophila WCHAH045096 isolated from sewage in China, other clinical isolates (Klebsiella, Enterobacter and Escherichia coli), and wastewater isolates (Citrobacter, Pseudomonas and other Aeromonas spp.). In addition to blaKPC-2 , pGSH8M-1-2 carries an IS26-mediated composite transposon including a macrolide resistance gene, mph(A). Although Aeromonas species are opportunistic pathogens, they could serve as potential environmental reservoir bacteria for carbapenemase and AMR genes. AMR monitoring from WWTP effluents will contribute to the detection of ongoing AMR dissemination in the environment and might provide an early warning of potential dissemination in clinical settings and communities. © 2019 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages.

Despite their ubiquity, relatively few bacteriophages have been characterized. Here, we set out to explore Caulobacter bacteriophages (caulophages) in the rhizosphere and characterized Kronos, the first caulophage isolated from the rhizosphere. Kronos is a member of the Siphoviridae family since it has a long flexible tail. In addition, an analysis of the Kronos genome indicated that many of the predicted proteins were distantly related to those of bacteriophages in the lambdoid family. Consistent with this observation, we were able to demonstrate the presence of cos sites that are similar to those found at the ends of lambdoid phage genomes. Moreover, Kronos displayed a relatively rare head and tail morphology compared to other caulophages but was similar to that of the lambdoid phages. Taken together, these data indicate that Kronos is distantly related to lambdoid phages and may represent a new Siphoviridae genus.


April 21, 2020  |  

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis.

Colletotrichum lentis causes anthracnose, which is a serious disease on lentil and can account for up to 70% crop loss. Two pathogenic races, 0 and 1, have been described in the C. lentis population from lentil. To unravel the genetic control of virulence, an isolate of the virulent race 0 was sequenced at 1481-fold genomic coverage. The 56.10-Mb genome assembly consists of 50 scaffolds with N50 scaffold length of 4.89 Mb. A total of 11 436 protein-coding gene models was predicted in the genome with 237 coding candidate effectors, 43 secondary metabolite biosynthetic enzymes and 229 carbohydrate-active enzymes (CAZymes), suggesting a contraction of the virulence gene repertoire in C. lentis. Scaffolds were assigned to 10 core and two minichromosomes using a population (race 0 × race 1, n = 94 progeny isolates) sequencing-based, high-density (14 312 single nucleotide polymorphisms) genetic map. Composite interval mapping revealed a single quantitative trait locus (QTL), qClVIR-11, located on minichromosome 11, explaining 85% of the variability in virulence of the C. lentis population. The QTL covers a physical distance of 0.84 Mb with 98 genes, including seven candidate effector and two secondary metabolite genes. Taken together, the study provides genetic and physical evidence for the existence of a minichromosome controlling the C. lentis virulence on lentil. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


April 21, 2020  |  

Nephromyces encodes a urate metabolism pathway and predicted peroxisomes, demonstrating that these are not ancient losses of apicomplexans.

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.


April 21, 2020  |  

Bioinformatic analysis of the complete genome sequence of Pectobacterium carotovorum subsp. brasiliense BZA12 and candidate effector screening

AbstractPectobacterium carotovorum subsp. brasiliense (Pcb) is a gram-negative, plant pathogenic bacterium of the soft rot Enterobacteriaceae (SRE) family. We present the complete genome sequence of Pcb strain BZA12, which reveals that Pcb strain BZA12 carries a single 4,924,809 bp chromosome with 51.97% GC content and comprises 4508 predicted protein-coding genes.Geneannotationofthese genes utilizedGO, KEGG,and COG databases.Incomparison withthree closely related soft-rot pathogens, strain BZA12 has 3797 gene families, among which 3107 gene families are identified as orthologous with those of both P. carotovorum subsp. carotovorum PCC21 and P. carotovorum subsp. odoriferum BCS7, as well as 36 putative Unique Gene Families. We selected five putative effectors from the BZA12 genome and transiently expressed them in Nicotiana benthamiana. Candidate effector A12GL002483 was localized in the cell nucleus and induced cell death. This study provides a foundation for a better understanding of the genomic structure and function of Pcb, particularly in the discovery of potential pathogenic factors and for the development of more effective strategies against this pathogen.


April 21, 2020  |  

Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid.

Phaseolus dumosus is an endemic species from mountain tops in Mexico that was found in traditional agriculture areas in Veracruz, Mexico. P. dumosus plants were identified by ITS sequences and their nodules were collected from agricultural fields or from trap plant experiments in the laboratory. Bacteria from P. dumosus nodules were identified as belonging to the phaseoli-etli-leguminosarum (PEL) or to the tropici group by 16S rRNA gene sequences. We obtained complete closed genomes from two P. dumosus isolates CCGE531 and CCGE532 that were phylogenetically placed within the tropici group but with a distinctive phylogenomic position and low average nucleotide identity (ANI). CCGE531 and CCGE532 had common phenotypic characteristics with tropici type B rhizobial symbionts. Genome synteny analysis and ANI showed that P. dumosus isolates had different chromids and our analysis suggests that chromids have independently evolved in different lineages of the Rhizobium genus. Finally, we considered that P. dumosus and Phaseolus vulgaris plants belong to the same cross-inoculation group since they have conserved symbiotic affinites for rhizobia.Copyright © 2018 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:IncpA1763-KPC:IncN1 or IncFIIpHN7A8:IncpA1763-KPC:IncN1.

IncR, IncFII, IncpA1763-KPC, and IncN1 plasmids have been increasingly found among Enterobacteriaceae species, but plasmids with hybrid structures derived from the above-mentioned incompatibility groups have not yet been described.Plasmids p721005-KPC, p504051-KPC, and pA3295-KPC were fully sequenced and compared with previously sequenced related plasmids pHN84KPC (IncR), pKPHS2 (IncFIIK), pKOX_NDM1 (IncFIIY), pHN7A8 (IncFIIpHN7A8), and R46 (IncN1).The backbone of p721005-KPC/p504051-KPC was a hybrid of the entire 10-kb IncR-type backbone from pHN84KPC, the entire 64.3-kb IncFIIK-type maintenance, and conjugal transfer regions from pKPHS2, a 15.5-kb IncFIIY-type maintenance region from pKOX_NDM1 and a 5.6-kb IncpA1763-KPC-type backbone region from pA1763-KPC, and it contained a primary IncR replicon and two auxiliary IncpA1763-KPC and IncN1 replicons. The backbone of pA3295-KPC was a hybrid of a 7.2-kb IncFIIpHN7A8-type backbone region from pHN7A8, the almost entire 33.3-kb IncN1-type maintenance and conjugal transfer regions highly similar to R46, a 26.2-kb IncFIIK-type maintenance regions from pKPHS2, the above 15.5-kb IncFIIY-type maintenance region, and the above 5.6-kb IncpA1763-KPC-type backbone region, and it contained a primary Inc-FIIpHN7A8 replicon and two auxiliary IncpA1763-KPC and IncN1 replicons. Each of p721005-KPC, p504051-KPC, and pA3295-KPC acquired a wealth of accessory modules, carrying a range of intact and residue mobile elements (such as insertion sequences, unit transposons, and integrons) and resistance markers (such as blaKPC, tetA, dfrA, and qnr).In each of p721005-KPC, p504051-KPC, and pA3295-KPC, multiple replicons in coordination with maintenance and conjugation regions of various origins would maintain a broad host range and a stable replication at a steady-state plasmid copy number.


April 21, 2020  |  

Genetic characterization and potential molecular dissemination mechanism of tet(31) gene in Aeromonas caviae from an oxytetracycline wastewater treatment system.

Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512?mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-?phzF-tetR(31)-tet(31)-?glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.Copyright © 2018. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.