June 1, 2021  |  

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of transmitted viruses in linked transmission pairs. Samples representing HIV transmission pairs were selected from the Zambia Emory HIV Research Project (Lusaka, Zambia) and sequenced. We examine Single Genome Amplification (SGA) prepped samples and samples containing complex mixtures of genomes. Whole genome consensus estimates for each of the samples were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. SMRT Sequencing data contained multiple full-length (greater than 9 kb) continuous reads for each sample. Simple whole genome consensus estimates easily identified transmission pairs. The clustering of the genome reads showed diversity differences between the samples, allowing us to characterize the diversity of the individual quasi-species comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

Rapid sequencing of HIV-1 genomes as single molecules from simple and complex samples.

Background: To better understand the relationships among HIV-1 viruses in linked transmission pairs, we sequenced several samples representing HIV transmission pairs from the Zambia Emory HIV Research Project (Lusaka, Zambia) using Single Molecule, Real-Time (SMRT) Sequencing. Methods: Single molecules were sequenced as full-length (9.6 kb) amplicons directly from PCR products without shearing. This resulted in multiple, fully-phased, complete HIV-1 genomes for each patient. We examined Single Genome Amplification (SGA) prepped samples, as well as samples containing complex mixtures of genomes. We detail mathematical techniques used in viral variant subspecies identification, including clustering distance metrics and mutual information, which were used to derive multiple de novo full-length genome sequences for each patient. Whole genome consensus estimates for each sample were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV-1 genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. Results: SMRT Sequencing data contained multiple full-length (>9 kb) continuous reads for each sample. Simple whole-genome consensus estimates easily identified transmission pairs. Clustering of genome reads showed diversity differences between samples, allowing characterization of the quasi-species diversity comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio system.


June 1, 2021  |  

Characterization of NNRTI mutations in HIV-1 RT using Single Molecule, Real-Time SMRT Sequencing.

Background: Genotypic testing of chronic viral infections is an important part of patient therapy and requires assays capable of detecting the entire spectrum of viral mutations. Single Molecule, Real-Time (SMRT) sequencing offers several advantages to other sequencing technologies, including superior resolution of mixed populations and long read lengths capable of spanning entire viral protein coding regions. We examined detection sensitivity of SMRT sequencing using a mixture of HIV-1 RT gene coding regions containing single NNRTI mutations. Methodology: SMRTbell templates were prepared from PCR products generated from a prospective reference material being developed by BC Center of Excellence for HIV/AIDS, and contained a mixture of fifteen infectious viruses containing single NNRTI resistance mutations (viz V90I, K101E, K103N, V108I, E138A/G/K/Q, V179D, Y181C, Y188C, G190A/S, M230L and P236L) built upon the HIV-1LAI molecular clone. Templates were sequenced on the PacBio RS II to obtain single molecule long reads using P4/C2 chemistry, using 180 minute movie collection without stage start. The relative abundances of the mutant viruses were then estimated using codon-aware analysis methods. Results: Sequencing of these templates produced average read lengths of 5.0 KB, comprising 40,000-fold coverage across the entire amplicon per SMRT Cell. All the expected mutations in the mixture of mutant viruses were accurately identified. Frequencies of NNRTI variants estimated ranged from 0.5% to 12.5%. Conclusions: Codon analysis revealed a number of variants across the amplicon with highly consistent results across SMRT Cells. From a single SMRT Cell, variants were accurately and reliably detected down to 0.5% with simple analyses. Long polymerase reads and high accuracy reads make it possible to call variants from just a few molecules. SMRT Sequencing can identify species comprising a mixed viral population, with granularity and low cost of consumables allowing for smaller multiplexing of samples and first-in-first-out processing.


June 1, 2021  |  

Next generation sequencing of full-length HIV-1 env during primary infection.

Background: The use of next generation sequencing (NGS) to examine circulating HIV env variants has been limited due to env’s length (2.6 kb), extensive indel polymorphism, GC deficiency, and long homopolymeric regions. We developed and standardized protocols for isolation, RT-PCR amplification, single molecule real-time (SMRT) sequencing, and haplotype analysis of circulating HIV-1 env variants to evaluate viral diversity in primary infection. Methodology: HIV RNA was extracted from 7 blood plasma samples (1 mL) collected from 5 subjects (one individual sampled and sequenced at 3 time points) in the San Diego Primary Infection Cohort between 3-33 months from their estimated date of infection (EDI). Median viral load per sample was 50,118 HIV RNA copies/mL (range: 22,387-446,683). Full-length (3.2 kb) env amplicons were constructed into SMRTbell templates without shearing, and sequenced on the PacBio RS II using P4/C2 chemistry and 180 minute movie collection without stage start. To examine viral diversity in each sample, we determined haplotypes by clustering circular consensus sequences (CCS), and reconstructing a cluster consensus sequence using a partial order alignment approach. We measured sample diversity both as the mean pairwise distance among reads, and the fraction of reads containing indel polymorphisms. Results: We collected a median of 8,775 CCS reads per SMRT Cell (range: 4243-12234). A median of 7 haplotypes per subject (range: 1-55) were inferred at baseline. For the one subject with longitudinal samples analyzed, we observed an increasing number of distinct haplotypes (8 to 55 haplotypes over the course of 30 months), and an increasing mean pairwise distance among reads (from 0.8% to 1.6%, Tamura-Nei 93). We also observed significant indel polymorphism, with 16% of reads from one sample later in infection (33 months post-EDI) exhibiting deletions of more than 10% of env with respect to the reference strain, HXB2. Conclusions: This study developed a standardized NGS procedure (PacBio SMRT) to deep sequence full-length HIV RNA env variants from the circulating viral population, achieving good coverage, confirming low env diversity during primary infection that increased over time, and revealing significant indel polymorphism that highlights structural variation as important to env evolution. The long, accurate reads greatly simplified downstream bioinformatics analyses, especially haplotype phasing, increasing our confidence in the results. The sequencing methodology and analysis tools developed here could be successfully applied to any area for which full-length HIV env analysis would be useful.


June 1, 2021  |  

High-throughput analysis of full-length proviral HIV-1 genomes from PBMCs.

Background: HIV-1 proviruses in peripheral blood mononuclear cells (PBMCs) are felt to be an important reservoir of HIV-1 infection. Given that this pool represents an archival library, it can be used to study virus evolution and CD4+ T cell survival. Accurate study of this pool is burdened by difficulties encountered in sequencing a full-length proviral genome, typically accomplished by assembling overlapping pieces and imputing the full genome. Methodology: Cryopreserved PBMCs collected from a total of 8 HIV+ patients from 1997-2001 were used for genomic DNA extraction. Patients had been receiving cART for 2-8 years at the time samples were obtained. 7 patients had pVL >50 copies/mL (mean: 312,282, range: 18,372-683,400) and 1 had pVL <50. Genomic DNA was subjected to limiting dilution prior to amplification of near-full-length genomes by a newly developed nested PCR. The predicted size of the PCR product was 9.0 kb, spanning from the 5’ LTR through the 3’ LTR. Single molecules were sequenced as near-full-length amplicons directly from PCR products without shearing using commercially available P4-C2 reagents and standard protocols on a PacBio RS II instrument. Quality of the genomes was validated by clonal positive controls and synthetic mixtures. Results: Near-full-length provirus genome sequences were successfully obtained from all 8 patients as continuous long reads from single molecules. PacBio sequencing required approximately 10% of the PCR product needed for Sanger sequencing and generated 325 MB per 3-hour run including 1,800 full-length intact genome reads on average. One patient’s sample was not at a limiting dilution and analysis revealed multiple subspecies. For 8 near-fulllength provirus genomes derived from the other 7 patients, large internal deletions were noted in 2 proviruses; APOBEC-mediated hypermutations were seen in 2 proviruses; and 4 proviruses appeared to be intact genomes. All of the defective proviruses showed a complete absence of resistance mutations in either RT or protease, even after 2-8 years of cART. On the contrary, all of the intact proviruses contained evidence of ART-resistance associated mutations suggesting that they represented relatively recent variants. Conclusions: Combining a novel protocol for full-length limiting dilution amplification of proviruses with PacBio SMRT sequencing allowed for the generation of near-full-length genomes with good quality and an ability to detect minor variants at the 1-10% level. Preliminary data analyses suggest that defective proviruses may represent archival variants that persist long-term in host cells, while intact proviruses within the PBMC pool showing evidence of active virus replication may represent more recent variants.


June 1, 2021  |  

Full-length HIV-1 env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibodies (bNAbs) may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined HIV-1 env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 loop region. We developed a PacBio single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics and viral escape motif evolution were interpreted in the context of the development V1/V2-targeting broadly neutralizing antibodies. Results: We collected a median of 6799 (range: 1770-14727) high quality full-length HIV env circular consensus sequences (CCS) per SMRT Cell, per time point. Using only CCS reads comprised of 6 or more passes over the HIV env insert (= 16 kb read length) ensured that our median per-base accuracy was 99.7%. A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found the cloned sequences evenly distributed among PacBio sequences. Viral escape from the V1/V2 targeted bNAbs was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40 months post-infection. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented view and ability to characterize HIV-1 env dynamics throughout the first four years of infection. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which will prove critical for increasing our understanding of how env evolution drives the development of antibody breadth.


June 1, 2021  |  

Sequencing complex mixtures of HIV-1 genomes with single-base resolution.

A large number of distinct HIV-1 genomes can be present in a single clinical sample from a patient chronically infected with HIV-1. We examined samples containing complex mixtures of near-full-length HIV-1 genomes. Single molecules were sequenced as near-full-length (9.6 kb) amplicons directly from PCR products without shearing. Mathematical analysis techniques deconvolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. We correctly estimated the originating genomes to single-base resolution along with their relative abundances for mixtures where the truth was known exactly by independent sequencing methods. Correct estimates were made even when genomes diverged by a single base. Minor abundances of 5% were reliably detected. SMRT Sequencing data contained near-full-length continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour collection time. SMRT Sequencing yields long- read sequencing results from individual DNA molecules with a rapid time-to-result. The single-molecule, full-length nature of the sequencing method allows us to estimate variant subspecies and relative abundances even from samples containing complex mixtures of genomes that differ by single bases. These results open the possibility of cost-effective full-genome sequencing of HIV-1 in mixed populations for applications such as incorporated-HIV-1 screening. In screening, genomes can differ by one to many thousands of bases and the ability to measure them can help scientifically inform treatment strategies.


June 1, 2021  |  

Full-length env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibody (bNAb) lineages may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 region. We developed a Pacific Biosciences single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics were interpreted in the context of the development of a V1/V2-targeting bNAb lineage isolated from the donor. Results: We collected a median of 6799 high quality full-length env sequences per timepoint (median per-base accuracy of 99.7%). A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found cloned env sequences evenly distributed among PacBio sequences. Phylogenetic analyses also revealed a potential transient intra-clade superinfection visible as a minority variant (~5%) at 9 months post-infection (MPI), and peaking in prevalence at 12MPI (~64%), just preceding the development of heterologous neutralization. Viral escape from the bNAb lineage was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40MPI. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented characterization of env dynamics and revealed an intra-clade superinfection that was not detected through conventional methods. The importance of superinfection in the development of this donor’s V1/V2-directed bNAb lineage is under investigation. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which may prove useful for understanding how env evolution can drive the development of antibody breadth.


June 1, 2021  |  

High-accuracy, single-base resolution of near-full-length HIV genomes.

Background: The HIV-1 proviral reservoir is incredibly stable, even while undergoing antiretroviral therapy, and is seen as the major barrier to HIV-1 eradication. Identifying and comprehensively characterizing this reservoir will be critical to achieving an HIV cure. Historically, this has been a tedious and labor intensive process, requiring high-replicate single-genome amplification reactions, or overlapping amplicons that are then reconstructed into full-length genomes by algorithmic imputation. Here, we present a deep sequencing and analysis method able to determine the exact identity and relative abundances of near-full-length HIV genomes from samples containing mixtures of genomes without shearing or complex bioinformatic reconstruction. Methods: We generated clonal near-full-length (~9 kb) amplicons derived from single genome amplification (SGA) of primary proviral isolates or PCR of well-documented control strains. These clonal products were mixed at various abundances and sequenced as near-full-length (~9 kb) amplicons without shearing. Each mixture yielded many near-full-length HIV-1 reads. Mathematical analysis techniques resolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. Results: Single Molecule, Real-Time (SMRT) Sequencing data contained near-full-length (~9 kb) continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour sequencing run. Our methods correctly recapitulated exactly the originating genomes at a single-base resolution and their relative abundances in both mixtures of clonal controls and SGAs, and these results were validated using independent sequencing methods. Correct resolution was achieved even when genomes differed only by a single base. Minor abundances of 5% were reliably detected. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules, a rapid time-to-result. The single-molecule, full-length nature of this sequencing method allows us to estimate variant subspecies and relative abundances with single-nucleotide resolution. This method allows for reference-agnostic and cost-effective full-genome sequencing of HIV-1, which could both further our understanding of latent infection and develop novel and improved tools for quantifying HIV provirus, which will be critical to cure HIV.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detection of HIV-1 Drug-Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger Sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach arbitrarily high quality across longer insert lengths at a lower cost and higher throughput than Sanger Sequencing. We apply this new algorithm, dubbed CCS2, to the characterization of the HIV-1 K103N drug-resistance associated mutation, which is both important clinically, and represents a challenge due to regional sequence context. A mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1,300 bp were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to arbitrarily high accuracy. This result, previously demonstrated for multi-molecule consensus sequences with the Quiver algorithm, is made possible by incorporating per-Zero Mode Waveguide (ZMW) characteristics, thus accounting for the intrinsic changes in the sequencing process that are unique to each ZMW. With CCS2, we are able to achieve a per-read empirical quality of QV30 with 19X coverage. This yields ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40. Additionally, we demonstrate a 0% miscall rate in both unmixed samples, and estimate a 48:52% frequency for the K103N mutation in the mixed sample, consistent with data produced by orthogonal platforms.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples. This particular DRAM has previously proved to be clinically relevant, but challenging to characterize due to regional sequence context. First, a mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1.3 kb were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Additionally, the proviral reservoir of a subject with known dates of virologic failure of an Efavirenz-based regimen and with documented emergence of drug resistant (K103N) viremia was sequenced at several time points as a proof-of-concept study to determine the kinetics of retention and decay of K103N.Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to high accuracy. With CCS2, we are able to achieve a per-read empirical quality of QV30 (99.9% accuracy) at 19X coverage. A total of ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40 (99.99%) were obtained for each sample. We demonstrate a 0% miscall rate in both unmixed control samples, and estimate a 48:52 frequency for the K103N mutation in the mixed (50:50) plasmid sample, consistent with data produced by orthogonal platforms. Additionally, the K103N escape variant was only detected in proviral samples from time points subsequent (19%) to the emergence of drug resistant viremia. This tool might be used to monitor the HIV reservoir for stable evolutionary changes throughout infection.


June 1, 2021  |  

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual antibody repertoire variability and disease. To remedy this, we are taking a multi-faceted approach to improving existing genomic resources in the human IGH region. First, from whole-genome and fosmid-based datasets, we are building the largest and most ethnically diverse set of IGH reference assemblies to date, by employing PacBio long-read sequencing combined with novel algorithms for phased haplotype assembly. In total, our effort will result in the characterization of >15 phased haplotypes from individuals of Asian, African, and European descent, to be used as a representative reference set by the genomics and immunogenetics community. Second, we are utilizing this more comprehensive sequence catalogue to inform the design and analysis of novel targeted IGH genotyping assays. Standard targeted DNA enrichment methods (e.g., exome capture) are currently optimized for the capture of only very short (100’s of bp) DNA segments. Our platform uses a modified bench protocol to pair existing capture-array technologies with the enrichment of longer fragments of DNA, enabling the use of PacBio sequencing of DNA segments up to 7 Kb. This substantial increase in contiguity disambiguates many of the complex repeated structures inherent to the locus, while yielding the base pair fidelity required to call SNVs. Together these resources will establish a stronger framework for further characterizing IGH genetic diversity and facilitate IGH genomic profiling in the clinical and research settings, which will be key to fully understanding the role of IGH germline variation in antibody repertoire development and disease.


February 5, 2021  |  

Video: Overview of SMRT technology

PacBio’s SMRT technology harnesses the natural process of DNA replication, which is a highly efficient and accurate process. Our SMRT technology enables the observation of DNA synthesis as it occurs…


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.