April 21, 2020  |  

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based identification of eukaryotes. This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens.

Culture-based molecular identification methods have revolutionized detection of pathogens, yet these methods are slow and may yield inconclusive results from environmental materials. The second-generation sequencing tools have much-improved precision and sensitivity of detection, but these analyses are costly and may take several days to months. Of the third-generation sequencing techniques, the portable MinION device (Oxford Nanopore Technologies) has received much attention because of its small size and possibility of rapid analysis at reasonable cost. Here, we compare the relative performances of two third-generation sequencing instruments, MinION and Sequel (Pacific Biosciences), in identification and diagnostics of fungal and oomycete pathogens from conifer (Pinaceae) needles and potato (Solanum tuberosum) leaves and tubers. We demonstrate that the Sequel instrument is efficient for metabarcoding of complex samples, whereas MinION is not suited for this purpose due to a high error rate and multiple biases. However, we find that MinION can be utilized for rapid and accurate identification of dominant pathogenic organisms and other associated organisms from plant tissues following both amplicon-based and PCR-free metagenomics approaches. Using the metagenomics approach with shortened DNA extraction and incubation times, we performed the entire MinION workflow, from sample preparation through DNA extraction, sequencing, bioinformatics, and interpretation, in 2.5 h. We advocate the use of MinION for rapid diagnostics of pathogens and potentially other organisms, but care needs to be taken to control or account for multiple potential technical biases.IMPORTANCE Microbial pathogens cause enormous losses to agriculture and forestry, but current combined culturing- and molecular identification-based detection methods are too slow for rapid identification and application of countermeasures. Here, we develop new and rapid protocols for Oxford Nanopore MinION-based third-generation diagnostics of plant pathogens that greatly improve the speed of diagnostics. However, due to high error rate and technical biases in MinION, the Pacific BioSciences Sequel platform is more useful for in-depth amplicon-based biodiversity monitoring (metabarcoding) from complex environmental samples.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution.

Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment.

High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming commonly used primers. Based on comparing the resulting long 16S rRNA gene fragments with public databases from all habitats, we found several novel family- to phylum-level archaeal taxa from topsoil and surface water. Our results suggest that archaeal diversity has been largely overlooked due to the limitations of available primers, and that improved primer pairs enable to estimate archaeal diversity more accurately. © 2018 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

The role of long-term mineral and organic fertilisation treatment in changing pathogen and symbiont community composition in soil

Application of organic fertilisers to soil prevents erosion, improves fertility and may suppress certain soil-borne plant pathogens, but it is still unclear how different trophic groups of fungi and oomycetes respond to long-term fertilisation treatment. The objective of the study was to examine the effect of different fertilisation regimes on fungal and oomycete pathogen- and mycorrhizal symbiont diversity and community structure in both soil and roots, using PacBio SMRT sequencing. The field experiment included three fertilisation treatments that have been applied since 1989: nitrogen fertilisation (WOM), nitrogen fertilisation with manure amendment (FYM) and alternative organic fertilisation (AOF), each applied at five different rates. Soil samples were collected three times during the growing season, while root samples were collected during the flowering stage. There was no influence of the studied variables on soil and root pathogen richness. Contrary to our hypothesis, pathogen relative abundance in both soil and roots was significantly higher in plots with the AOF treatment. Furthermore, richness and relative abundance of arbuscular mycorrhizal (AM) fungi decreased significantly in the AOF treatment. Permutational analysis of variance (PERMANOVA) demonstrated the effect of fertilisation treatment on pathogen community composition in both soil and roots. Our findings indicate that organic fertilisers may not always benefit soil microbial community composition. Therefore, further studies are needed to understand how fertilisation affects mycorrhizal mutualists and pathogens.


April 21, 2020  |  

Investigating the bacterial microbiota of traditional fermented dairy products using propidium monoazide with single-molecule real-time sequencing.

Traditional fermented dairy foods have been the major components of the Mongolian diet for millennia. In this study, we used propidium monoazide (PMA; binds to DNA of nonviable cells so that only viable cells are enumerated) and single-molecule real-time sequencing (SMRT) technology to investigate the total and viable bacterial compositions of 19 traditional fermented dairy foods, including koumiss from Inner Mongolia (KIM), koumiss from Mongolia (KM), and fermented cow milk from Mongolia (CM); sample groups treated with PMA were designated PKIM, PKM, and PCM. Full-length 16S rRNA sequencing identified 195 bacterial species in 121 genera and 13 phyla in PMA-treated and untreated samples. The PMA-treated and untreated samples differed significantly in their bacterial community composition and a-diversity values. The predominant species in KM, KIM, and CM were Lactobacillus helveticus, Streptococcus parauberis, and Lactobacillus delbrueckii, whereas the predominant species in PKM, PKIM, and PCM were Enterobacter xiangfangensis, Lactobacillus helveticus, and E. xiangfangensis, respectively. Weighted and unweighted principal coordinate analyses showed a clear clustering pattern with good separation and only minor overlapping. In addition, a pure culture method was performed to obtain lactic acid bacteria resources in dairy samples according to the results of SMRT sequencing. A total of 102 LAB strains were identified and Lb. helveticus (68.63%) was the most abundant, in agreement with SMRT sequencing results. Our results revealed that the bacterial communities of traditional dairy foods are complex and vary by type of fermented dairy product. The PMA treatment induced significant changes in bacterial community structure.Copyright © 2019 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.