Menu
June 1, 2021  |  

Allele-level sequencing and phasing of full-length HLA class I and II genes using SMRT Sequencing technology

The three classes of genes that comprise the MHC gene family are actively involved in determining donor-recipient compatibility for organ transplant, as well as susceptibility to autoimmune diseases via cross-reacting immunization. Specifically, Class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DQ and -DP are considered medically important for genetic analysis to determine histocompatibility. They are highly polymorphic and have thousands of alleles implicated in disease resistance and susceptibility. The importance of full-length HLA gene sequencing for genotyping, detection of null alleles, and phasing is now widely acknowledged. While DNA-sequencing-based HLA genotyping has become routine, only 7% of the HLA genes have been characterized by allele-level sequencing, while 93% are still defined by partial sequences. The gold-standard Sanger sequencing technology is being quickly replaced by second-generation, high- throughput sequencing methods due to its inability to generate unambiguous phased reads from heterozygous alleles. However, although these short, high-throughput, clonal sequencing methods are better at heterozygous allele detection, they are inadequate at generating full-length haploid gene sequences. Thus, full-length gene sequencing from an enhancer-promoter region to a 3’UTR that includes phasing information without the need for imputation still remains a technological challenge. The best way to overcome these challenges is to sequence these genes with a technology that is clonal in nature and has the longest possible read lengths. We have employed Single Molecule Real-Time (SMRT) sequencing technology from Pacific Biosciences for sequencing full-length HLA class I and II genes.


April 21, 2020  |  

Construction of full-length Japanese reference panel of class I HLA genes with single-molecule, real-time sequencing.

Human leukocyte antigen (HLA) is a gene complex known for its exceptional diversity across populations, importance in organ and blood stem cell transplantation, and associations of specific alleles with various diseases. We constructed a Japanese reference panel of class I HLA genes (ToMMo HLA panel), comprising a distinct set of HLA-A, HLA-B, HLA-C, and HLA-H alleles, by single-molecule, real-time (SMRT) sequencing of 208 individuals included in the 1070 whole-genome Japanese reference panel (1KJPN). For high-quality allele reconstruction, we developed a novel pipeline, Primer-Separation Assembly and Refinement Pipeline (PSARP), in which the SMRT sequencing and additional short-read data were used. The panel consisted of 139 alleles, which were all extended from known IPD-IMGT/HLA sequences, contained 40 with novel variants, and captured more than 96.5% of allelic diversity in 1KJPN. These newly available sequences would be important resources for research and clinical applications including high-resolution HLA typing, genetic association studies, and analyzes of cis-regulatory elements.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.