We present a high-quality draft genome assembly for Fusarium oxysporum f. sp. cubense tropical race 4 (Fusarium odoratissimum), assembled from PacBio reads and consisting of 15 contigs with a total assembly size of 48.59?Mb. This strain appears to belong to vegetative compatibility group complex 01213/16.Copyright © 2019 Warmington et al.
Fusarium oxysporum f. sp. cubense is the causal agent of banana Fusarium wilt, also known as Panama disease. Here, we present a high-quality genome sequence of F. oxysporum f. sp. cubense strain 160527. The genome assembly is composed of 12 contigs with a total assembly length of 51,139,495?bp (N50 contig length, 4,884,632?bp). Copyright © 2019 Asai et al.
Streptomyces sp. strain Z26 exhibited antifungal activity and turned out to be a producer of the secondary metabolites novonestmycin A and B. The 6.5-Mb draft genome gives insight into the complete secondary metabolite production capacity and builds the basis to find and locate the biosynthetic gene cluster encoding the novonestmycins.
Casuarina equisetifolia (C. equisetifolia), a conifer-like angiosperm with resistance to typhoon and stress tolerance, is mainly cultivated in the coastal areas of Australasia. C. equisetifolia, making it a valuable model to study secondary growth associated genes and stress-tolerance traits. However, the genome sequence is unavailable and therefore wood-associated growth rate and stress resistance at the molecular level is largely unexplored. We therefore constructed a high-quality draft genome sequence of C. equisetifolia by a combination of Illumina second-generation sequencing reads and Pacific Biosciences single-molecule real-time (SMRT) long reads to advance the investigation of this species. Here, we report the genome assembly, which contains approximately…
Colletotrichum has a broad host range and causes major yield losses of crops. The fungus Colletotrichum gloeosporioides is associated with anthracnose on Chinese fir. In this study, we present a high-quality draft genome sequence of C. gloeosporioides sensu stricto SMCG1#C, providing a reference genomic data for further research on anthracnose of Chinese fir and other hosts.