Menu
September 22, 2019  |  

Biosynthesis of the 15-membered ring depsipeptide neoantimycin.

Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety. Although the biosynthetic gene cluster for neoantimycins was recently identified, the enzymatic logic that governs the synthesis of neoantimycins has not yet been revealed. In this work, the neoantimycin gene cluster is identified, and an updated sequence and annotation is provided delineating a nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) hybrid scaffold. Using cosmid expression and CRISPR/Cas-based genome editing, several heterologous expression strains for neoantimycin production are constructed in two separate Streptomyces species. A combination of in vivo and in vitro analysis is further used to completely characterize the biosynthesis of neoantimycins including the megasynthases and trans-acting domains. This work establishes a set of highly tractable hosts for producing and engineering neoantimycins and their C11 oxidized analogs, paving the way for neoantimycin-based drug discovery and development.


September 22, 2019  |  

Multiple large inversions and breakpoint rewiring of gene expression in the evolution of the fire ant social supergene.

Supergenes consist of co-adapted loci that segregate together and are associated with adaptive traits. In the fire ant Solenopsis invicta, two ‘social’ supergene variants regulate differences in colony queen number and other traits. Suppressed recombination in this system is maintained, in part, by a greater than 9 Mb inversion, but the supergene is larger. Has the supergene in S. invicta undergone multiple large inversions? The initial gene content of the inverted allele of a supergene would be the same as that of the wild-type allele. So, how did the inversion increase in frequency? To address these questions, we cloned one extreme breakpoint in the fire ant supergene. In doing so, we found a second large (greater than 800 Kb) rearrangement. Furthermore, we determined the temporal order of the two big inversions based on the translocation pattern of a third small fragment. Because the S. invicta supergene lacks evolutionary strata, our finding of multiple inversions may support an introgression model of the supergene. Finally, we showed that one of the inversions swapped the promoter of a breakpoint-adjacent gene, which might have conferred a selective advantage relative to the non-inverted allele. Our findings provide a rare example of gene alterations arising directly from an inversion event.© 2018 The Author(s).


September 22, 2019  |  

Genetic diversity of Cryptosporidium hominis in a Bangladeshi community as revealed by whole genome sequencing.

We studied the genetic diversity of Cryptosporidium hominis infections in slum-dwelling infants from Dhaka over a 2-year period. Cryptosporidium hominis infections were common during the monsoon, and were genetically diverse as measured by gp60 genotyping and whole-genome resequencing. Recombination in the parasite was evidenced by the decay of linkage disequilibrium in the genome over <300 bp. Regions of the genome with high levels of polymorphism were also identified. Yet to be determined is if genomic diversity is responsible in part for the high rate of reinfection, seasonality, and varied clinical presentations of cryptosporidiosis in this population.


September 22, 2019  |  

Multiplex assessment of protein variant abundance by massively parallel sequencing.

Determining the pathogenicity of genetic variants is a critical challenge, and functional assessment is often the only option. Experimentally characterizing millions of possible missense variants in thousands of clinically important genes requires generalizable, scalable assays. We describe variant abundance by massively parallel sequencing (VAMP-seq), which measures the effects of thousands of missense variants of a protein on intracellular abundance simultaneously. We apply VAMP-seq to quantify the abundance of 7,801 single-amino-acid variants of PTEN and TPMT, proteins in which functional variants are clinically actionable. We identify 1,138 PTEN and 777 TPMT variants that result in low protein abundance, and may be pathogenic or alter drug metabolism, respectively. We observe selection for low-abundance PTEN variants in cancer, and show that p.Pro38Ser, which accounts for ~10% of PTEN missense variants in melanoma, functions via a dominant-negative mechanism. Finally, we demonstrate that VAMP-seq is applicable to other genes, highlighting its generalizability.


September 22, 2019  |  

Computational comparison of availability in CTL/gag epitopes among patients with acute and chronic HIV-1 infection.

Recent studies indicate that there is selection bias for transmission of viral polymorphisms associated with higher viral fitness. Furthermore, after transmission and before a specific immune response is mounted in the recipient, the virus undergoes a number of reversions which allow an increase in their replicative capacity. These aspects, and others, affect the viral population characteristic of early acute infection.160 singlegag-gene amplifications were obtained by limiting-dilution RT-PCR from plasma samples of 8 ARV-naïve patients with early acute infection (<30?days, 22?days average) and 8 ARV-naive patients with approximately a year of infection (10 amplicons per patient). Sanger sequencing and NGS SMRT technology (Pacific Biosciences) were implemented to sequence the amplicons. Phylogenetic analysis was performed by using MEGA 6.06. HLA-I (A and B) typing was performed by SSOP-PCR method. The chromatograms were analyzed with Sequencher 4.10. Epitopes and immune-proteosomal cleavages prediction was performed with CBS prediction server for the 30 HLA-A and -B alleles most prevalent in our population with peptide lengths from 8 to 14 mer. Cytotoxic response prediction was performed by using IEDB Analysis Resource.After implementing epitope prediction analysis, we identified a total number of 325 possible viral epitopes present in two or more acute or chronic patients. 60.3% (n?=?196) of them were present only in acute infection (prevalent acute epitopes) while 39.7% (n?=?129) were present only in chronic infection (prevalent chronic epitopes). Within p24, the difference was equally dramatic with 59.4% (79/133) being acute epitopes (p?


September 22, 2019  |  

Fungal Epigenomics: Detection and Analysis.

Across Eukaryota, DNA modifications play an important role in regulation of gene expression. While 5-methylcytosine (5mC) has been explored in depth, other modifications such as 6-methyladenine (6 mA) have historically been overlooked, in part due to technical difficulties in collecting/analyzing these data. However, recent technological advances have enabled exploration of these marks with much greater detail and on a larger scale. In this chapter, we discuss multiple methods for identifying and analyzing both 5mC and 6 mA across fungi.


September 22, 2019  |  

Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies.

Robust molecular tool kits in model and industrial microalgae are key to efficient targeted manipulation of endogenous and foreign genes in the nuclear genome for basic research and, as importantly, for the development of algal strains to produce renewable products such as biofuels. While Cas9-mediated gene knockout has been demonstrated in a small number of algal species with varying efficiency, the ability to stack traits or generate knockout mutations in two or more loci are often severely limited by selectable agent availability. This poses a critical hurdle in developing production strains, which require stacking of multiple traits, or in probing functionally redundant gene families. Here, we combine Cas9 genome editing with an inducible Cre recombinase in the industrial alga Nannochloropsis gaditana to generate a strain, NgCas9+Cre+, in which the potentially unlimited stacking of knockouts and addition of new genes is readily achievable. Cre-mediated marker recycling is first demonstrated in the removal of the selectable marker and GFP reporter transgenes associated with the Cas9/Cre construct in NgCas9+Cre+ Next, we show the proof-of-concept generation of a markerless knockout in a gene encoding an acyl-CoA oxidase (Aco1), as well as the markerless recapitulation of a 2-kb insert in the ZnCys gene 5′-UTR, which results in a doubling of wild-type lipid productivity. Finally, through an industrially oriented process, we generate mutants that exhibit up to ~50% reduction in photosynthetic antennae size by markerless knockout of seven genes in the large light-harvesting complex gene family. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

Population genomics of Culiseta melanura, the principal vector of Eastern equine encephalitis virus in the United States.

Eastern Equine Encephalitis (EEE) (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne arbovirus that circulates in an enzootic cycle involving Culiseta melanura mosquitoes and wild Passeriformes birds in freshwater swamp habitats. Recently, the northeastern United States has experienced an intensification of virus activity with increased human involvement and northward expansion into new regions. In addition to its principal role in enzootic transmission of EEE virus among avian hosts, recent studies on the blood-feeding behavior of Cs. melanura throughout its geographic range suggest that this mosquito may also be involved in epizootic / epidemic transmission to equines and humans in certain locales. Variations in blood feeding behavior may be a function of host availability, environmental factors, and/or underlying genetic differences among regional populations. Despite the importance of Cs. melanura in transmission and maintenance of EEE virus, the genetics of this species remains largely unexplored.To investigate the occurrence of genetic variation in Cs. melanura, the genome of this mosquito vector was sequenced resulting in a draft genome assembly of 1.28 gigabases with a contig N50 of 93.36 kilobases. Populations of Cs. melanura from 10 EEE virus foci in the eastern North America were genotyped with double-digest RAD-seq. Following alignment of reads to the reference genome, variant calling, and filtering, 40,384 SNPs were retained for downstream analyses. Subsequent analyses revealed genetic differentiation between northern and southern populations of this mosquito species. Moreover, limited fine-scale population structure was detected throughout northeastern North America, suggesting local differentiation of populations but also a history of ancestral polymorphism or contemporary gene flow. Additionally, a genetically distinct cluster was identified predominantly at two northern sites.This study elucidates the first evidence of fine-scale population structure in Cs. melanura throughout its eastern range and detects evidence of gene flow between populations in northeastern North America. This investigation provides the groundwork for examining the consequences of genetic variations in the populations of this mosquito species that could influence vector-host interactions and the risk of human and equine infection with EEE virus.


September 22, 2019  |  

Changes in the genetic requirements for microbial interactions with increasing community complexity.

Microbial community structure and function rely on complex interactions whose underlying molecular mechanisms are poorly understood. To investigate these interactions in a simple microbiome, we introduced E. coli into an experimental community based on a cheese rind and identified the differences in E. coli’s genetic requirements for growth in interactive and non-interactive contexts using Random Barcode Transposon Sequencing (RB-TnSeq) and RNASeq. Genetic requirements varied among pairwise growth conditions and between pairwise and community conditions. Our analysis points to mechanisms by which growth conditions change as a result of increasing community complexity and suggests that growth within a community relies on a combination of pairwise and higher-order interactions. Our work provides a framework for using the model organism E. coli as a readout to investigate microbial interactions regardless of the genetic tractability of members of the studied ecosystem.© 2018, Morin et al.


September 22, 2019  |  

The transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxis.

Campylobacter jejuni is one of the most common bacterial causes of food-borne enteritis worldwide. Chemotaxis in C. jejuni is known to be critical for the successful colonization of the host and key for the adaptation of the microbial species to different host environments. In C. jejuni, chemotaxis is regulated by a complex interplay of 13 or even more different chemoreceptors, also known as transducer-like proteins (Tlps). Recently, a novel chemoreceptor gene, tlp12, was described and found to be present in 29.5% of the investigated C. jejuni strains.In this study, we present a functional analysis of Tlp12 with the aid of a tlp12 knockout mutant of the C. jejuni strain A17. Substrate specificity was investigated by capillary chemotaxis assays and revealed that Tlp12 plays an important role in chemotaxis towards glutamate and pyruvate. Moreover, the ?tlp12 mutant shows increased swarming motility in soft agar assays, an enhanced invasion rate into Caco-2 cells and an increased autoagglutination rate. The growth rate was slightly reduced in the ?tlp12 mutant. The identified phenotypes were in partial restored by complementation with the wild type gene. Tlp12-harboring C. jejuni strains display a strong association with chicken, whose excreta are known to contain high glutamate levels.TLP12 is a chemoreceptor for glutamate and pyruvate recognition. Deletion of tlp12 has an influence on distinct physiological features, such as growth rate, swarming motility, autoagglutination and invasiveness.


September 22, 2019  |  

Methylation of the reelin gene promoter in peripheral blood and its relationship with the cognitive function of schizophrenia patients.

There is a decrease in the expression of the reelin gene (RELN) in the brain of schizophrenia patients, which can underlie observed cognitive abnormalities. It is suggested that this decrease is caused by the hypermethylation of the RELN promoter. The aim of the study was to investigate methylation of the RELN promoter in the peripheral blood of schizophrenia patients and its association with their cognitive deficits. A modified SMRT-BS (single-molecule real-time bisulfite sequencing) was used. We determined the methylation rate of 170 CpG sites within a 1465 bp DNA region containing the entire CpG island in the RELN promoter in 51 schizophrenia patients and 52 healthy controls. All subjects completed a battery of neuropsychological tests. There were no DNA methylation changes associated with schizophrenia. Most CpGs sites were unmethylated in both groups. At the same time, there was a variability in the methylation level of different regions within the promoter. The methylation level in the area from -258 to -151 bp relative to RELN transcription start site was a significant predictor of the index of patients’ cognitive functioning if sex, age, smoking, education, and polymorphism rsl858815 had been considered. The positive correlation between the methylation rate in this region and cognitive index suggests that the hypomethylation of the RELN promoter could contribute to the development of cognitive deficits in schizophrenia.


September 22, 2019  |  

De novo assembly, delivery and expression of a 101 kb human gene in mouse cells

Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger, mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here we describe a pipeline for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kb. The DNA assembly step is supported by an integrated robotic workcell. We assemble the 101 kb human HPRT1 gene in yeast, deliver it to mouse cells, and show expression of the human protein from its full-length gene. This pipeline provides a framework for producing systematic, designer variants of any mammalian gene locus for functional evaluation in cells.


September 22, 2019  |  

Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces S. aureus infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.


September 22, 2019  |  

Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase.

Here we present APOBEC-coupled epigenetic sequencing (ACE-seq), a bisulfite-free method for localizing 5-hydroxymethylcytosine (5hmC) at single-base resolution with low DNA input. The method builds on the observation that AID/APOBEC family DNA deaminase enzymes can potently discriminate between cytosine modification states and exploits the non-destructive nature of enzymatic, rather than chemical, deamination. ACE-seq yielded high-confidence 5hmC profiles with at least 1,000-fold less DNA input than conventional methods. Applying ACE-seq to generate a base-resolution map of 5hmC in tissue-derived cortical excitatory neurons, we found that 5hmC was almost entirely confined to CG dinucleotides. The whole-genome map permitted cytosine, 5-methylcytosine (5mC) and 5hmC to be parsed and revealed genomic features that diverged from global patterns, including enhancers and imprinting control regions with high and low 5hmC/5mC ratios, respectively. Enzymatic deamination overcomes many challenges posed by bisulfite-based methods, thus expanding the scope of epigenome profiling to include scarce samples and opening new lines of inquiry regarding the role of cytosine modifications in genome biology.


September 22, 2019  |  

An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila.

Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits, an economically important phytopathogen affecting an economically important phytopathogen affecting few cultivated Cucurbitaceae few cultivated Cucurbitaceae host plant species in temperate eastern North America. However, essentially nothing is known about E. tracheiphila population structure or genetic diversity. To address this shortcoming, a representative collection of 88 E. tracheiphila isolates was gathered from throughout its geographic range, and their genomes were sequenced. Phylogenomic analysis revealed three genetic clusters with distinct hrpT3SS virulence gene repertoires, host plant association patterns, and geographic distributions. Low genetic heterogeneity within each cluster suggests a recent population bottleneck followed by population expansion. We showed that in the field and greenhouse, cucumber (Cucumis sativus), which was introduced to North America by early Spanish conquistadors, is the most susceptible host plant species and the only species susceptible to isolates from all three lineages. The establishment of large agricultural populations of highly susceptible C. sativus in temperate eastern North America may have facilitated the original emergence of E. tracheiphila into cucurbit agroecosystems, and this introduced plant species may now be acting as a highly susceptible reservoir host. Our findings have broad implications for agricultural sustainability by drawing attention to how worldwide crop plant movement, agricultural intensification, and locally unique environments may affect the emergence, evolution, and epidemic persistence of virulent microbial pathogens.IMPORTANCEErwinia tracheiphila is a virulent phytopathogen that infects two genera of cucurbit crop plants, Cucurbita spp. (pumpkin and squash) and Cucumis spp. (muskmelon and cucumber). One of the unusual ecological traits of this pathogen is that it is limited to temperate eastern North America. Here, we complete the first large-scale sequencing of an E. tracheiphila isolate collection. From phylogenomic, comparative genomic, and empirical analyses, we find that introduced Cucumis spp. crop plants are driving the diversification of E. tracheiphila into multiple lineages. Together, the results from this study show that locally unique biotic (plant population) and abiotic (climate) conditions can drive the evolutionary trajectories of locally endemic pathogens in unexpected ways. Copyright © 2018 Shapiro et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.