June 1, 2021  |  

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of transmitted viruses in linked transmission pairs. Samples representing HIV transmission pairs were selected from the Zambia Emory HIV Research Project (Lusaka, Zambia) and sequenced. We examine Single Genome Amplification (SGA) prepped samples and samples containing complex mixtures of genomes. Whole genome consensus estimates for each of the samples were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. SMRT Sequencing data contained multiple full-length (greater than 9 kb) continuous reads for each sample. Simple whole genome consensus estimates easily identified transmission pairs. The clustering of the genome reads showed diversity differences between the samples, allowing us to characterize the diversity of the individual quasi-species comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

Advances in sequence consensus and clustering algorithms for effective de novo assembly and haplotyping applications.

One of the major applications of DNA sequencing technology is to bring together information that is distant in sequence space so that understanding genome structure and function becomes easier on a large scale. The Single Molecule Real Time (SMRT) Sequencing platform provides direct sequencing data that can span several thousand bases to tens of thousands of bases in a high-throughput fashion. In contrast to solving genomic puzzles by patching together smaller piece of information, long sequence reads can decrease potential computation complexity by reducing combinatorial factors significantly. We demonstrate algorithmic approaches to construct accurate consensus when the differences between reads are dominated by insertions and deletions. High-performance implementations of such algorithms allow more efficient de novo assembly with a pre-assembly step that generates highly accurate, consensus-based reads which can be used as input for existing genome assemblers. In contrast to recent hybrid assembly approach, only a single ~10 kb or longer SMRTbell library is necessary for the hierarchical genome assembly process (HGAP). Meanwhile, with a sensitive read-clustering algorithm with the consensus algorithms, one is able to discern haplotypes that differ by less than 1% different from each other over a large region. One of the related applications is to generate accurate haplotype sequences for HLA loci. Long sequence reads that can cover the whole 3 kb to 4 kb diploid genomic regions will simplify the haplotyping process. These algorithms can also be applied to resolve individual populations within mixed pools of DNA molecules that are similar to each, e.g., by sequencing viral quasi-species samples.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens.

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single-nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non- pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA Sequencing with short reads (SMRT CCS (circular consensus) or second-generation reads), wherein the short reads are used to error-correct the long reads which are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which SMRT sequencing reads from a single long insert library are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run, and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) for numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT Sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. With relatively short sequencing run times and automated analysis pipelines, it is possible to go from an unknown DNA sample to its complete de novo genome and epigenome in about a day.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA sequencing with short, high-accuracy reads (SMRT (circular consensus sequencing) CCS or second-generation reads) to generate long, highly accurate reads that are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which long SMRT sequencing reads (average readlengths >5,000 bases) are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) to numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. The process has been automated and requires less than 1 day from an unknown DNA sample to its complete de novo genome and epigenome.


June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


June 1, 2021  |  

A novel analytical pipeline for de novo haplotype phasing and amplicon analysis using SMRT Sequencing technology.

While the identification of individual SNPs has been readily available for some time, the ability to accurately phase SNPs and structural variation across a haplotype has been a challenge. With individual reads of an average length of 9 kb (P5-C3), and individual reads beyond 30 kb in length, SMRT Sequencing technology allows the identification of mutation combinations such as microdeletions, insertions, and substitutions without any predetermined reference sequence. Long- amplicon analysis is a novel protocol that identifies and reports the abundance of differing clusters of sequencing reads within a single library. Graphs generated via hierarchical clustering of individual sequencing reads are used to generate Markov models representing the consensus sequence of individual clusters found to be significantly different. Long-amplicon analysis is capable of differentiating between underlying sequences that are 99.9% similar, which is suitable for haplotyping and differentiating pseudogenes from coding transcripts. This protocol allows for the identification of structural variation in the MUC5AC gene sequence, despite the presence of a gap in the current genome assembly, and can also be used for HLA haplotyping. Clustering can also been applied to identify full length transcripts for the purpose of estimating consensus sequences and enumerating isoform types. Long-amplicon analysis allows for the elucidation of complex regions otherwise missed by other sequencing technologies, which may contribute to the diagnosis and understanding of otherwise complex diseases.


June 1, 2021  |  

An interactive workflow for the analysis of contigs from the metagenomic shotgun assembly of SMRT Sequencing data.

The data throughput of next-generation sequencing allows whole microbial communities to be analyzed using a shotgun sequencing approach. Because a key task in taking advantage of these data is the ability to cluster reads that belong to the same member in a community, single-molecule long reads of up to 30 kb from SMRT Sequencing provide a unique capability in identifying those relationships and pave the way towards finished assemblies of community members. Long reads become even more valuable as samples get more complex with lower intra-species variation, a larger number of closely related species, or high intra-species variation. Here we present a collection of tools tailored for PacBio data for the analysis of these fragmented metagenomic assembles, allowing improvements in the assembly results, and greater insight into the communities themselves. Supervised classification is applied to a large set of sequence characteristics, e.g., GC content, raw-read coverage, k-mer frequency, and gene prediction information, allowing the clustering of contigs from single or highly related species. A unique feature of SMRT Sequencing data is the availability of base modification / methylation information, which can be used to further analyze clustered contigs expected to be comprised of single or very closely related species. Here we show base modification information can be used to further study variation, based on differences in the methylated DNA motifs involved in the restriction modification system. Application of these techniques is demonstrated on a monkey intestinal microbiome sample and an in silico mix of real sequencing data from distinct bacterial samples.


June 1, 2021  |  

Developments in PacBio metagenome sequencing: Shotgun whole genomes and full-length 16S.

The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a microbial community. The epigenetic approach is a novel validation method unique to SMRT Sequencing. In addition to whole-genome shotgun sequencing, SMRT Sequencing also offers improved classification resolution and reliability of metagenomic and microbiome samples by the full-length sequencing of 16S rRNA (~1500 bases long). Microbial communities can be detected at the species level in some cases, rather than being limited to the genus taxonomic classification as constrained by short-read technologies. The performance of SMRT Sequencing for these metagenomic samples achieved >99% predicted concordance to reference sequences in cecum, soil, water, and mock control investigations for bacterial 16S. Community samples are estimated to contain from 2.3 and up to 15 times as many species with abundance levels as low as 0.05% compared to the identification of phyla groups.


June 1, 2021  |  

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences about evolutionary strategies that are otherwise missed by the coverage biases associated with short- read sequencing technologies. Additional benefits afforded by SMRT Sequencing include the simultaneous capability to detect epigenomic modifications and obtain full-length cDNA transcripts that obsolete the need for assembly. With direct sequencing of DNA in real-time, this has resulted in the identification of numerous base modifications and motifs, which genome-wide profiles have linked to specific methyltransferase activities. Our new offering, the Iso-Seq Application, allows for the accurate differentiation between transcript isoforms that are difficult to resolve with short-read technologies. PacBio reads easily span transcripts such that both 5’/3’ primers for cDNA library generation and the poly-A tail are observed. As such, exon configuration and intron retention events can be analyzed without ambiguity. This technological advance is useful for characterizing transcript diversity and improving gene structure annotations in reference genomes. We review solutions available with SMRT Sequencing, from targeted sequencing efforts to obtaining reference genomes (>100 Mb). This includes strategies for identifying microsatellites and conducting phylogenetic comparisons with targeted gene families. We highlight how to best leverage our long reads that have exceeded 20 kb in length for research investigations, as well as currently available bioinformatics strategies for analysis. Benefits for these applications are further realized with consistent use of size selection of input sample using the BluePippin™ device from Sage Science as demonstrated in our genome improvement projects. Using the latest P5-C3 chemistry on model organisms, these efforts have yielded an observed contig N50 of ~6 Mb, with the longest contig exceeding 12.5 Mb and an average base quality of QV50.


June 1, 2021  |  

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. We will share highlights from our genome projects using the latest P5- C3 chemistry to generate high-quality reference genomes with the highest contiguity, contig N50 exceeding 1 Mb, and average base quality of QV50. Additionally, the value of long, intact reads to provide a no-assembly approach to investigate transcript isoforms using our Iso-Seq protocol will be presented for full transcriptome characterization and targeted surveys of genes with complex structures. PacBio provides the most comprehensive assembly with annotation when combining offerings for both genome and transcriptome research efforts. For more focused investigation, PacBio also offers researchers opportunities to easily investigate and survey genes with complex structures.


June 1, 2021  |  

Complex alternative splicing patterns in hematopoietic cell subpopulations revealed by third-generation long reads.

Background: Alternative splicing expands the repertoire of gene functions and is a signature for different cell populations. Here we characterize the transcriptome of human bone marrow subpopulations including progenitor cells to understand their contribution to homeostasis and pathological conditions such as atherosclerosis and tumor metastasis. To obtain full-length transcript structures, we utilized long reads in addition to RNA-seq for estimating isoform diversity and abundance. Method: Freshly harvested, viable human bone marrow tissues were extracted from discarded harvesting equipment and separated into total bone marrow (total), lineage-negative (lin-) progenitor cells and differentiated cells (lin+) by magnetic bead sorting with antibodies to surface markers of hematopoietic cell lineages. Sequencing was done with SOLiD, Illumina HiSeq (100bp paired-end reads), and PacBio RS II (full-length cDNA library protocol for 1 – 6 kb libraries). Short reads were assembled using both Trinity for de novo assembly and Cufflinks for genome-guided assembly. Full-length transcript consensus sequences were obtained for the PacBio data using the RS_IsoSeq protocol from PacBios SMRTAnalysis software. Quantitation for each sample was done independently for each sequencing platform using Sailfish to obtain the TPM (transcripts per million) using k-mer matching. Results: PacBios long read sequencing technology is capable of sequencing full-length transcripts up to 10 kb and reveals heretofore-unseen isoform diversity and complexity within the hematopoietic cell populations. A comparison of sequencing depth and de novo transcript assembly with short read, second-generation sequencing reveals that, while short reads provide precision in determining portions of isoform structure and supporting larger 5 and 3 UTR regions, it fails in providing a complete structure especially when multiple isoforms are present at the same locus. Increased breadth of isoform complexity is revealed by long reads that permits further elaboration of full isoform diversity and specific isoform abundance within each separate cell population. Sorting the distribution of major and minor isoforms reveals a cell population-specific balance focused on distinct genome loci and shows how tissue specificity and diversity are modulated by alternative splicing.


June 1, 2021  |  

Resources for advanced bioinformaticians working in plant and animal genomes with SMRT Sequencing.

Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio and third-party solutions, including HGAP, MHAP, and ECTools. Resources and tools available on GitHub are reviewed, as well as datasets representing major model research organisms made publically available for community evaluation or interested developers.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

SMRT Sequencing of the alala genome

Single Molecule Real-Time (SMRT) Sequencing was used to generate long reads for whole genome shotgun sequencing of the genome of the`alala (Hawaiian crow). The ‘alala is endemic to Hawaii, and the only surviving lineage of the crow family, Corvidae, in the Hawaiian Islands. The population declined to less than 20 individuals in the 1990s, and today this charismatic species is extinct in the wild. Currently existing in only two captive breeding facilities, reintroduction of the ‘alala is scheduled to begin in the Fall of 2016. Reintroduction efforts will be assisted by information from the ‘alala genome generated and assembled by SMRT Technology, which will allow detailed analysis of genes associated with immunity, behavior, and learning. Using SMRT Sequencing, we present here best practices for achieving long reads for whole genome shotgun sequencing for complex plant and animal genomes such as the ‘alala genome. With recent advances in SMRTbell library preparation, P6-C4 chemistry and 6-hour movies, the number of useable bases now exceeds 1 Gb per SMRT Cell. Read lengths averaging 10 – 15 kb can be routinely achieved, with the longest reads approaching 70 kb. Furthermore, > 25% of useable bases are in reads greater than 30 kb, advantageous for generating contiguous draft assemblies of contig N50 up to 5 Mb. De novo assemblies of large genomes are now more tractable using SMRT Sequencing as the standalone technology. We also present guidelines for planning out projects for the de novo assembly of large genomes.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are both important in understanding the genetic basis for human disease, and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid-aware de novo assembly of Craig Venter’s well-studied genome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.