April 21, 2020  |  

An open resource for accurately benchmarking small variant and reference calls.

Benchmark small variant calls are required for developing, optimizing and assessing the performance of sequencing and bioinformatics methods. Here, as part of the Genome in a Bottle (GIAB) Consortium, we apply a reproducible, cloud-based pipeline to integrate multiple short- and linked-read sequencing datasets and provide benchmark calls for human genomes. We generate benchmark calls for one previously analyzed GIAB sample, as well as six genomes from the Personal Genome Project. These new genomes have broad, open consent, making this a ‘first of its kind’ resource that is available to the community for multiple downstream applications. We produce 17% more benchmark single nucleotide variations, 176% more indels and 12% larger benchmark regions than previously published GIAB benchmarks. We demonstrate that this benchmark reliably identifies errors in existing callsets and highlight challenges in interpreting performance metrics when using benchmarks that are not perfect or comprehensive. Finally, we identify strengths and weaknesses of callsets by stratifying performance according to variant type and genome context.


April 21, 2020  |  

Fast and accurate genomic analyses using genome graphs.

The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, thus impairing analysis accuracy. Here we present a graph reference genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million insertions and deletions (indels). The pipeline processes one whole-genome sequencing sample in 6.5?h using a system with 36?CPU cores. We show that using a graph genome reference improves read mapping sensitivity and produces a 0.5% increase in variant calling recall, with unaffected specificity. Structural variations incorporated into a graph genome can be genotyped accurately under a unified framework. Finally, we show that iterative augmentation of graph genomes yields incremental gains in variant calling accuracy. Our implementation is an important advance toward fulfilling the promise of graph genomes to radically enhance the scalability and accuracy of genomic analyses.


April 21, 2020  |  

Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome.

The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5?kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of short-read sequencing to detect small variants and structural variants. We estimate that 2,434 discordances are correctable mistakes in the 'genome in a bottle' (GIAB) benchmark set. Nearly all (99.64%) variants can be phased into haplotypes, further improving variant detection. De novo genome assembly using CCS reads alone produced a contiguous and accurate genome with a contig N50 of >15?megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.