Menu
September 22, 2019  |  

Comparative genomics of Pseudomonas sp. strain SI-3 associated with macroalga Ulva prolifera, the causative species for green tide in the Yellow Sea.

Algae-bacteria associations occurred widely in marine habitats, however, contributions of bacteria to macroalgal blooming were almost unknown. In this study, a potential endophytic strain SI-3 was isolated from Ulva prolifera, the causative species for the world’s largest green tide in the Yellow Sea, following a strict bleaching treatment to eliminate epiphytes. The genomic sequence of SI-3 was determined in size of 4.8 Mb and SI-3 was found to be mostly closed to Pseudomonas stutzeri. To evaluate the characteristics of SI-3 as a potential endophyte, the genomes of SI-3 and other 20 P. stutzeri strains were compared. We found that SI-3 had more strain-specific genes than most of the 20 P. stutzeri strains. Clusters of Orthologous Groups (COGs) analysis revealed that SI-3 had a higher proportion of genes assigned to transcriptional regulation and signal transduction compared with the 20 P. stutzeri strains, including four rhizosphere bacteria, indicating a complicated interaction network between SI-3 and its host. P. stutzeri is renowned for its metabolic versatility in aromatic compounds degradation. However, significant gene loss was observed in several aromatic compounds degradation pathways in SI-3, which may be an evolutional adaptation that developed upon association with its host. KEGG analysis revealed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, two competing dissimilatory nitrate reduction pathways, co-occurred in the genome of SI-3, like most of the other 20 P. stutzeri strains. We speculated that DNRA of SI-3 may contribute a competitive advantage in nitrogen acquisition of U. prolifera by conserving nitrogen in NH4+ form, as in the case of microalgae bloom. Collectively, these data suggest that Pseudomonas sp. strain SI-3 was a suitable candidate for investigation of the algae-bacteria interaction with U. prolifera and the ecological impacts on algal blooming.


September 22, 2019  |  

The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines.

DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of methylation (>94%) were identified. The methylome was strikingly stable over course of growth, but also in a subpopulation responsible for a critical step in the bacterium’s lifecycle: successful survival and proliferation in insects. The rare unmethylated GATC motifs were preferentially located in putative promoter regions, and most of them were methylated after Dam methyltransferase overexpression, suggesting that DNA methylation is involved in gene regulation. Our findings bring key insight into bacterial methylomes and encourage further research to decipher the role of loci protected from DNA methylation in gene regulation.


September 22, 2019  |  

Antagonistic pleiotropy in the bifunctional surface protein FadL (OmpP1) during adaptation of Haemophilus influenzae to chronic lung infection associated with chronic obstructive pulmonary disease.

Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9?years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL’s interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi’s ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium’s ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ?fadL strains’ niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways. Copyright © 2018 Moleres et al.


September 22, 2019  |  

Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution.

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


September 22, 2019  |  

Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition.

Phase-variation of Type I restriction-modification systems can rapidly alter the sequence motifs they target, diversifying both the epigenetic patterns and endonuclease activity within clonally descended populations. Here, we characterize the Streptococcus pneumoniae SpnIV phase-variable Type I RMS, encoded by the translocating variable restriction (tvr) locus, to identify its target motifs, mechanism and regulation of phase variation, and effects on exchange of sequence through transformation. The specificity-determining hsdS genes were shuffled through a recombinase-mediated excision-reintegration mechanism involving circular intermediate molecules, guided by two types of direct repeat. The rate of rearrangements was limited by an attenuator and toxin-antitoxin system homologs that inhibited recombinase gene transcription. Target motifs for both the SpnIV, and multiple Type II, MTases were identified through methylation-sensitive sequencing of a panel of recombinase-null mutants. This demonstrated the species-wide diversity observed at the tvr locus can likely specify nine different methylation patterns. This will reduce sequence exchange in this diverse species, as the native form of the SpnIV RMS was demonstrated to inhibit the acquisition of genomic islands by transformation. Hence the tvr locus can drive variation in genome methylation both within and between strains, and limits the genomic plasticity of S. pneumoniae.


September 22, 2019  |  

Genomic analysis of consecutive Acinetobacter baumannii strains from a single patient.

Acinetobacter baumannii is one of the most important nosocomial pathogens, and thus it is required to investigate how it disseminate in hospitals and infect patients. We performed whole genome sequencing for 24 A. baumannii strains isolated successively from the blood of a single patient to evaluate whether repeated infections were due to re-infection or relapse infection and to investigate within-host evolution. The whole genome of the first strain, BL1, was sequenced de novo using the PacBio RSII system. BL2-BL24, were sequenced with an Illumina Hiseq4000 and mapped to the genome sequences of BL1. We identified 42 single-nucleotide variations among the strains. The SNVs differentiated the strains into three groups, BL1, BL2-BL16, and BL17-BL24, indicating that the patient suffered from re-infections or co-infections by similar, but different strains. The results also showed that A. baumannii strains in each group were rather stable at the genomic level. Our study emphasizes the importance of intensive infection control.


September 22, 2019  |  

Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection.

Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution.


September 22, 2019  |  

N6-methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome.

DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting for percent of 3.80, 3.10, 3.70, 4.20, 3.40, 2.10, and 3.10 of the total adenines in BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8, and RS105, respectively. Notably, more than 82% of 6mA sites were located within gene bodies in all seven strains. Two specific motifs for 6?mA modification, ARGT and AVCG, were prevalent in all seven strains. Comparison of putative DNA methylation motifs from the seven strains reveals that Xoc have a specific DNA methylation system. Furthermore, the 6?mA modification of rpfC dramatically decreased during Xoc infection indicates the important role for Xoc adaption to environment.


September 22, 2019  |  

Complete genome sequence of the cyprodinil-degrading bacterium Acinetobacter johnsonii LXL_C1.

Acinetobacter johnsonii LXL_C1, a cyprodinil degrader, was isolated and purified from cyprodinil-contaminated agricultural soil. Here, we report the complete genome sequence of LXL_C1. The genome comprises one 3,398,706 bp circular chromosome with 41.2% G + C content and one 44,866 bp plasmid. Annotation based on COG and KEGG database analyses revealed genes encoding a cytochrome P450 monooxygenase and hydrolase, which can effectively degrade cyprodinil. The complete genome sequence of LXL_C1 can facilitate genetic engineering of a recombinant cyprodinil degrader. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation.

Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5′-untranslated regions (5′-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5′-UTR were found. Interestingly, acetogenesis genes contained longer 5′-UTR with lower RNA-folding free energy than other genes, revealing that the 5′-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5′-UTRs is necessary for cold-adaptive acetogenesis.© 2018 Shin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.


September 22, 2019  |  

A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period.

Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.