Menu
June 1, 2021  |  

Complete resequencing of extended genomic regions using fosmid target capture and single molecule real-time (SMRT) long read sequencing technology.

A longstanding goal of genomic analysis is the identification of causal genetic factors contributing to disease. While the common disease/common variant hypothesis has been tested in many genome-wide association studies, few advancements in identifying causal variation have been realized, and instead recent findings point away from common variants towards aggregate rare variants as causal. A challenge is obtaining complete phased genomic sequences over extended genomic regions from sufficient numbers of cases and controls to identify all potential variation causal of a disease. To address this, we modified methods for targeted DNA isolation using fosmid technology and single-molecule, long-sequence-read generaton that combine for complete, haplotype-resolved resequencing across extended genomic subregions. As proof of principal, we validated the approach by resequencing four 800 kbp segments that span a major histocompatibility complex (MHC) common extended haplotype (CEH) associated with disease. The data revealed the extent of conservation exposing a near identity among four DR4 CEHs over conserved regions, detailing rare variation and measuring sequence accuracy. In a second test, we sequenced the complete KIR haplotypes from 8 individuals within a specific timeframe and cost. Single molecule long-read sequencing technology generated contiguous full-­length fosmid sequences of 30 to 40 kb in a single read, allowing assembly of resolved haplotypes with very little data processing. All of the sequences produced from these projects were contiguous, phased, with accuracy above 99.99%. The results demonstrated that cost-effective scale-­up is possible to generate scores to hundreds of phased chromosomal sequences of extended lengths that can encompass genomic regions associated with disease.


June 1, 2021  |  

MaSuRCA Mega-Reads Assembly Technique for haplotype resolved genome assembly of hybrid PacBio and Illumina Data

The developments in DNA sequencing technology over the past several years have enabled large number of scientists to obtain sequences for the genomes of their interest at a fairly low cost. Illumina Sequencing was the dominant whole genome sequencing technology over the past few years due to its low cost. The Illumina reads are short (up to 300bp) and thus most of those draft genomes produced from Illumina data are very fragmented which limits their usability in practical scenarios. Longer reads are needed for more contiguous genomes. Recently Pacbio sequencing made significant advances in developing cost-effective long-read (>10000bp) sequencing technology and their data, although several times more expensive than Illumina, can be used to produce high quality genomes. Pacbio data can be used for de novo assembly, however due to its high error rate high coverage of the genome is required this raising the cost barrier. A solution for cost-effective genomes is to combine Pacbio and Illumina data leveraging the low error rates of the short Illumina reads and the length of the Pacbio reads. We have developed MaSuRCA mega-reads assembler for efficient assembly of hybrid data sets and we demonstrate that it performs well compared to the other published hybrid techniques. Another important benefit of the long reads is their ability to link the haplotype differences. The mega-reads approach corrects each Pacbio read independently and thus haplotype differences are preserved. Thus, leveraging the accuracy of the Illumina data and the length of the Pacbio reads, MaSuRCA mega-reads can produce haplotype-resolved genome assemblies, where each contig has sequence from a single haplotype. We present preliminary results on haplotype-resolved genome assemblies of faux (proof-of-concept) and real data.


June 1, 2021  |  

Phased human genome assemblies with Single Molecule, Real-Time Sequencing

In recent years, human genomic research has focused on comparing short-read data sets to a single human reference genome. However, it is becoming increasingly clear that significant structural variations present in individual human genomes are missed or ignored by this approach. Additionally, remapping short-read data limits the phasing of variation among individual chromosomes. This reduces the newly sequenced genome to a table of single nucleotide polymorphisms (SNPs) with little to no information as to the co-linearity (phasing) of these variants, resulting in a “mosaic” reference representing neither of the parental chromosomes. The variation between the homologous chromosomes is lost in this representation, including allelic variations, structural variations, or even genes present in only one chromosome, leading to lost information regarding allelic-specific gene expression and function. To address these limitations, we have made significant progress integrating haplotype information directly into genome assembly process with long reads. The FALCON-Unzip algorithm leverages a string graph assembly approach to facilitate identification and separation of heterozygosity during the assembly process to produce a highly contiguous assembly with phased haplotypes representing the genome in its diploid state. The outputs of the assembler are pairs of sequences (haplotigs) containing the allelic differences, including SNPs and structural variations, present in the two sets of chromosomes. The development and testing of our de-novo diploid assembler was facilitated and carefully validated using inbred reference model organisms and F1 progeny, which allowed us to ascertain the accuracy and concordance of haplotigs relative to the two inbred parental assemblies. Examination of the results confirmed that our haplotype-resolved assemblies are “Gold Level” reference genomes having a quality similar to that of Sanger-sequencing, BAC-based assembly approaches. We further sequenced and assembled two well-characterized human samples into their respective phased diploid genomes with gap-free contig N50 sizes greater than 23 Mb and haplotig N50 sizes greater than 380 kb. Results of these assemblies and a comparison between the haplotype sets are presented.


June 1, 2021  |  

Phased diploid genome assembly with single-molecule real-time sequencing

While genome assembly projects have been successful in many haploid and inbred species, the assembly of non-inbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


June 1, 2021  |  

Detecting pathogenic structural variants with long-read PacBio SMRT Sequencing

Most of the base pairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization or optical mapping but too large to reliably discover with short-read DNA sequencing. Long-read sequencing with PacBio Single Molecule, Real-Time (SMRT) Sequencing platforms fills this technology gap. PacBio SMRT Sequencing detects tens of thousands of structural variants in a human genome with approximately five times the sensitivity of short-read DNA sequencing. Effective application of PacBio SMRT Sequencing to detect structural variants requires quality bioinformatics tools that account for the characteristics of PacBio reads. To provide such a solution, we developed pbsv, a structural variant caller for PacBio reads that works as a chain of simple stages: 1) map reads to the reference genome, 2) identify reads with signatures of structural variation, 3) cluster nearby reads with similar signatures, 4) summarize each cluster into a consensus variant, and 5) filter for variants with sufficient read support. To evaluate the baseline performance of pbsv, we generated high coverage of a diploid human genome on the PacBio Sequel System, established a target set of structural variants, and then titrated to lower coverage levels. The false discovery rate for pbsv is low at all coverage levels. Sensitivity is high even at modest coverage: above 85% at 10-fold coverage and above 95% at 20-fold coverage. To assess the potential for PacBio SMRT Sequencing to identify pathogenic variants, we evaluated an individual with clinical symptoms suggestive of Carney complex for whom short-read whole genome sequencing was uninformative. The individual was sequenced to 9-fold coverage on the PacBio Sequel System, and structural variants were called with pbsv. Filtering for rare, genic structural variants left six candidates, including a heterozygous 2,184 bp deletion that removes the first coding exon of PRKAR1A. Null mutations in PRKAR1Acause autosomal dominant Carney complex, type 1. The variant was determined to be de novo, and it was classified as likely pathogenic based on ACMG standards and guidelines for variant interpretation. These case studies demonstrate the ability of pbsv to detect structural variants in low-coverage PacBio SMRT Sequencing and suggest the importance of considering structural variants in any study of human genetic variation.


June 1, 2021  |  

Haplotyping of full-length transcript reads from long-read sequencing can reveal allelic imbalances in isoform expression

The Pacific Biosciences Iso-Seq method, which can produce high-quality isoform sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. Here, we develop an algorithm called IsoPhase that postprocesses Iso-Seq data to retrieve allele specific isoform information. Using simulated data, we show that for both diploid and tetraploid genomes, IsoPhase results in good SNP recovery with low FDR at error rates consistent with CCS reads. We apply IsoPhase to a haplotyperesolved genome assembly and multiple fetal tissue Iso-Seq dataset from a F1 cross of Angus x Brahman cattle subspecies. IsoPhase-called haplotypes were validated by the phased assembly and demonstrate the potential for revealing allelic imbalances in isoform expression.


June 1, 2021  |  

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare disease and common trait association studies, it is necessary to perform population-scale surveys with a technology effective at detecting indels and structural variants, such as PacBio SMRT Sequencing. For these studies, it is important to have a joint calling workflow that works with PacBio reads. We have developed pbsv, an indel and structural variant caller for PacBio reads, that provides a two-step joint calling workflow similar to that used to build the ExAC database. The first stage, discovery, is performed separately for each sample and consolidates whole genome alignments into a sparse representation of potentially variant loci. The second stage, calling, is performed on all samples together and considers only the signatures identified in the discovery stage. We applied the pbsv joint calling workflow to PacBio reads from twenty human genomes, with coverage ranging from 5-fold to 80-fold per sample for a total of 460-fold. The analysis required only 102 CPU hours, and identified over 800,000 indels and structural variants, including hundreds of inversions and translocations, many times more than discovered with short-read sequencing. The workflow is scalable to thousands of samples. The ongoing application of this workflow to thousands of samples will provide insight into the evolution and functional importance of large variants in human evolution and disease.


June 1, 2021  |  

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more contiguous assembled sequences. Two primary methods exist for phased diploid genome assembly. The first, TrioCanu requires Illumina data from parents and PacBio data from the offspring. The long reads from the child are partitioned into maternal and paternal bins using parent-specific sequences; the separate PacBio read bins are then assembled, generating two fully phased genomes. An alternative approach (FALCON-Unzip) does not require parental information and separates PacBio reads, during genome assembly, using heterozygous SNPs. The length of haplotype phase blocks in FALCON-Unzip is limited by the magnitude and distribution of heterozygosity, the length of sequence reads, and read coverage. Because of this, FALCON-Unzip contigs typically contain haplotype-switch errors between phase blocks, resulting in primary contig of mixed parental origin. We developed FALCON-Phase, which integrates Hi-C data downstream of FALCON-Unzip to resolve phase switches along contigs. We applied the method to a human (Puerto Rican, HG00733) and non-human genome assemblies and evaluated accuracy using samples with trio data. In a cattle genome, we observe >96% accuracy in phasing when compared to TrioCanu assemblies as well as parental SNPs. For a high-quality PacBio assembly (>90-fold Sequel coverage) of a Puerto Rican individual we scaffolded the FALCON-Phase contigs, and re-phased the contigs creating a de novo scaffolded, phased diploid assembly with chromosome-scale contiguity.


June 1, 2021  |  

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We further demonstrate the general utility of HiFi reads by analyzing multiple clones of Cabernet Sauvignon. Three different clones were sequenced and de novo assembled with the CANU assembly algorithm, generating draft assemblies of very high contiguity equal to or better than earlier assembly efforts using PacBio long reads. Using the Cabernet Sauvignon Clone 8 assembly as a reference, we mapped the HiFi reads generated from Clone 6 and Clone 47 to identify single nucleotide polymorphisms (SNPs) and structural variants (SVs) that are specific to each of the three samples.


June 1, 2021  |  

Structural variant detection with long read sequencing reveals driver and passenger mutations in a melanoma cell line

Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has important implications for cancer research, as it is clear that SVs are both common and biologically important in many cancer subtypes, including colorectal, breast and ovarian cancer. Without confident and comprehensive detection of structural variants, it is unlikely we have a sufficiently complete picture of all the genomic changes that impact cancer development, disease progression, treatment response, drug resistance, and relapse. To begin to address this unmet need, we have sequenced the COLO829 tumor and matched normal lymphoblastoid cell lines to 49- and 51-fold coverage, respectively, with PacBio SMRT Sequencing, with the goal of developing a high-confidence structural variant call set that can be used to empirically evaluate cost-effective experimental designs for larger scale studies and develop structural variation calling software suitable for cancer genomics. Structural variant calling revealed over 21,000 deletions and 19,500 insertions larger than 20 bp, nearly four times the number of events detected with short-read sequencing. The vast majority of events are shared between the tumor and normal, with about 100 putative somatic deletions and 400 insertions, primarily in microsatellites. A further 40 rearrangements were detected, nearly exclusively in the tumor. One rearrangement is shared between the tumor and normal, t(5;X) which disrupts the mismatch repeat gene MSH3, and is likely a driver mutation. Generating high-confidence call sets that cover the entire size-spectrum of somatic variants from a range of cancer model systems is the first step in determining what will be the best approach for addressing an ongoing blind spot in our current understanding of cancer genomes. Here the application of PacBio sequencing to a melanoma cancer cell line revealed thousands of previously overlooked variants, including a mutation likely involved in tumorogenesis.


June 1, 2021  |  

Structural variant detection in crops using low-fold coverage long-read sequencing

Genomics studies have shown that the insertions, deletions, duplications, translocations, inversions, and tandem repeat expansions in the structural variant (SV) size range (>50 bp) contribute to the evolution of traits and often have significant associations with agronomically important phenotypes. However, most SVs are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing. While de novo assembly is the most comprehensive way to identify variants in a genome, recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants at low coverage. Here we present SV characterization in the major crop species Oryza sativa subsp. indica (rice) with low-fold coverage of long reads. In addition, we provide recommendations for sequencing and analysis for the application of this workflow to other important agricultural species.


June 1, 2021  |  

High-quality human genomes achieved through HiFi sequence data and FALCON-Unzip assembly

De novo assemblies of human genomes from accurate (85-90%), continuous long reads (CLR) now approach the human reference genome in contiguity, but the assembly base pair accuracy is typically below QV40 (99.99%), an order-of-magnitude lower than the standard for finished references. The base pair errors complicate downstream interpretation, particularly false positive indels that lead to false gene loss through frameshifts. PacBio HiFi sequence data, which are both long (>10 kb) and very accurate (>99.9%) at the individual sequence read level, enable a new paradigm in human genome assembly. Haploid human assemblies using HiFi data achieve similar contiguity to those using CLR data and are highly accurate at the base level1. Furthermore, HiFi assemblies resolve more high-identity sequences such as segmental duplications2. To enable HiFi assembly in diploid human samples, we have extended the FALCON-Unzip assembler to work directly with HiFi reads. Here we present phased human diploid genome assemblies from HiFi sequencing of HG002, HG005, and the Vertebrate Genome Project (VGP) mHomSap1 trio on the PacBio Sequel II System. The HiFi assemblies all exceed the VGP’s quality guidelines, approaching QV50 (99.999%) accuracy. For HG002, 60% of the genome was haplotype-resolved, with phase-block N50 of 143Kbp and phasing accuracy of 99.6%. The overall mean base accuracy of the assembly was QV49.7. In conclusion, HiFi data show great promise towards complete, contiguous, and accurate diploid human assemblies.


June 1, 2021  |  

Comprehensive structural and copy-number variant detection with long reads

To comprehensively detect large variants in human genomes, we have extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a typical human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH and short reads. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.