The developments in DNA sequencing technology over the past several years have enabled large number of scientists to obtain sequences for the genomes of their interest at a fairly low cost. Illumina Sequencing was the dominant whole genome sequencing technology over the past few years due to its low cost. The Illumina reads are short (up to 300bp) and thus most of those draft genomes produced from Illumina data are very fragmented which limits their usability in practical scenarios. Longer reads are needed for more contiguous genomes. Recently Pacbio sequencing made significant advances in developing cost-effective long-read (>10000bp) sequencing technology…
The Pacific Biosciences Iso-Seq method, which can produce high-quality isoform sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. Here, we develop an algorithm called IsoPhase that postprocesses Iso-Seq data to retrieve allele specific isoform information. Using simulated data, we show that for both diploid and tetraploid genomes, IsoPhase results in good SNP recovery with low FDR at error rates consistent with CCS reads. We apply IsoPhase to a haplotyperesolved genome assembly and multiple fetal tissue Iso-Seq dataset from a F1 cross of Angus x Brahman cattle subspecies. IsoPhase-called haplotypes were validated…
Haplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. These assemblies can be created in various ways, such as use of tissues that contain single-haplotype (haploid) genomes, or by co-sequencing of parental genomes, but these approaches can be impractical in many situations. We present FALCON-Phase, which integrates long-read sequencing data and ultra-long-range Hi-C chromatin interaction data of a diploid individual to create high-quality, phased diploid genome assemblies. The method was evaluated by application to three datasets, including human, cattle, and zebra finch, for which high-quality, fully haplotype resolved assemblies were available for benchmarking. Phasing algorithm accuracy…
The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS…