X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, February 26, 2020

Effect of coverage depth and haplotype phasing on structural variant detection with PacBio long reads

Each human genome has thousands of structural variants compared to the reference assembly, up to 85% of which are difficult or impossible to detect with Illumina short reads and are only visible with long, multi-kilobase reads. The PacBio RS II and Sequel single molecule, real-time (SMRT) sequencing platforms have made it practical to generate long reads at high throughput. These platforms enable the discovery of structural variants just as short-read platforms did for single nucleotide variants. Numerous software algorithms call structural variants effectively from PacBio long reads, but algorithm sensitivity is lower for insertion variants and all heterozygous variants. Furthermore,…

Read More »

Wednesday, February 26, 2020

A high-quality genome assembly of SMRT Sequences reveals long-range haplotype structure in the diploid mosquito Aedes aegypti

Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, chikungunya, and other diseases. The outbreak of Zika in the Americas, which can cause microcephaly in the fetus of infected women, adds urgency to the need for a high-quality reference genome in order to better understand the organism’s biology and its role in transmitting human disease. We describe the first diploid assembly of an insect genome, using SMRT sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO…

Read More »

Wednesday, February 26, 2020

A high-quality genome assembly of SMRT sequences reveals long range haplotype structure in the diploid mosquito Aedes aegypti

Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, and chikungunya. We describe the first diploid assembly of an insect genome, using SMRT Sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO genes complete), and is high quality (mean base >QV30 after polishing). Long-range haplotype structure, in some cases encompassing more than 4 Mb of extremely divergent homologous sequence with dramatic differences in coding sequence content, is resolved using a combination of the FALCON-Unzip assembler, genome…

Read More »

Wednesday, February 26, 2020

Best practices for whole genome sequencing using the Sequel System

Plant and animal whole genome sequencing has proven to be challenging, particularly due to genome size, high density of repetitive elements and heterozygosity. The Sequel System delivers long reads, high consensus accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Template Prep Kit reduces the time (~3 hours) and DNA input (~3 µg), making the…

Read More »

Wednesday, February 26, 2020

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The…

Read More »

Monday, January 23, 2017

Tutorial: Long Amplicon Analysis application

This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes.

Read More »

1 2 3 4

Subscribe for blog updates:

Archives