fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

Effect of coverage depth and haplotype phasing on structural variant detection with PacBio long reads

Each human genome has thousands of structural variants compared to the reference assembly, up to 85% of which are difficult or impossible to detect with Illumina short reads and are only visible with long, multi-kilobase reads. The PacBio RS II and Sequel single molecule, real-time (SMRT) sequencing platforms have made it practical to generate long reads at high throughput. These platforms enable the discovery of structural variants just as short-read platforms did for single nucleotide variants. Numerous software algorithms call structural variants effectively from PacBio long reads, but algorithm sensitivity is lower for insertion variants and all heterozygous variants. Furthermore,…

Read More »

Tuesday, June 1, 2021

A high-quality genome assembly of SMRT Sequences reveals long-range haplotype structure in the diploid mosquito Aedes aegypti

Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, chikungunya, and other diseases. The outbreak of Zika in the Americas, which can cause microcephaly in the fetus of infected women, adds urgency to the need for a high-quality reference genome in order to better understand the organism’s biology and its role in transmitting human disease. We describe the first diploid assembly of an insect genome, using SMRT sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO…

Read More »

Tuesday, June 1, 2021

A high-quality genome assembly of SMRT sequences reveals long range haplotype structure in the diploid mosquito Aedes aegypti

Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, and chikungunya. We describe the first diploid assembly of an insect genome, using SMRT Sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO genes complete), and is high quality (mean base >QV30 after polishing). Long-range haplotype structure, in some cases encompassing more than 4 Mb of extremely divergent homologous sequence with dramatic differences in coding sequence content, is resolved using a combination of the FALCON-Unzip assembler, genome…

Read More »

Tuesday, June 1, 2021

Best practices for whole genome sequencing using the Sequel System

Plant and animal whole genome sequencing has proven to be challenging, particularly due to genome size, high density of repetitive elements and heterozygosity. The Sequel System delivers long reads, high consensus accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Template Prep Kit reduces the time (~3 hours) and DNA input (~3 µg), making the…

Read More »

Tuesday, June 1, 2021

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The…

Read More »

Tuesday, June 1, 2021

Haplotyping using full-length transcript sequencing reveals allele-specific expression

An important need in analyzing complex genomes is the ability to separate and phase haplotypes. While whole genome assembly can deliver this information, it cannot reveal whether there is allele-specific gene or isoform expression. The PacBio Iso-Seq method, which can produce high-quality transcript sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. We present an algorithm called IsoPhase that post-processes Iso-Seq data for transcript-based haplotyping. We applied IsoPhase to a maize Iso-Seq dataset consisting of two homozygous parents and two F1 cross hybrids. We validated the majority of the SNPs called with…

Read More »

Tuesday, June 1, 2021

TLA & long-read sequencing: Efficient targeted sequencing and phasing of the CFTR gene

Background: The sequencing and haplotype phasing of entire gene sequences improves the understanding of the genetic basis of disease and drug response. One example is cystic fibrosis (CF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies have revolutionized CF treatment, but only in a minority of CF subjects. Observed heterogeneity in CFTR modulator efficacy is related to the range of CFTR mutations; revertant mutations can modify the response to CFTR modulators, and other intronic variations in the ~200 kb CFTR gene have been linked to disease severity. Heterogeneity in the CFTR gene may also be linked to differential responses to…

Read More »

Friday, February 5, 2021

ASHG Virtual Poster: Effect of coverage depth and haplotype phasing on structural variant detection with PacBio long reads

PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.

Read More »

Friday, February 5, 2021

Tutorial: Long amplicon analysis application [SMRT Link v5.0.0]

This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes. This tutorial covers features of SMRT Link v5.0.0.

Read More »

Friday, February 5, 2021

Webinar: Addressing “NGS Dead Zones” with third generation PacBio sequencing

SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: Amplicon SMRT Sequencing applications in human genetics

In this ASHG workshop presentation, Stuart Scott of the Icahn School of Medicine at Mount Sinai, presented on using the PacBio system for amplicon sequencing in pharmacogenomics and clinical genomics workflows. Accurate, phased amplicon sequence for the CYP2D6 gene, for example, has allowed his team to reclassify up to 20% of samples, providing data that’s critical for drug metabolism and dosing. In clinical genomics, Scott presented several case studies illustrating the utility of highly accurate, long-read sequencing for assessing copy number variants and for confirming a suspected medical diagnosis in rare disease patients. He noted that the latest Sequel System…

Read More »

Friday, February 5, 2021

Webinar: Variant calling and de novo genome assembly with PacBio HiFi reads

In this webinar, Sarah Kingan, Staff Scientist, PacBio, presents recent work on de novo genome assembly using PacBio HiFi reads. She highlights the benefits of HiFi data for base level accuracy, haplotype phasing, and ease of computation. And in samples ranging from human to plants, she benchmarks various tools for HiFi assembly and phasing, including the newly extended FALCON-Unzip assembler. Subsequently, Andrew Carroll, Genomics Product Lead, GoogleAI, explores how the GoogleAI team retrained DeepVariant, a highly accurate SNP and Indel caller, for PacBio HiFi data. The resulting DeepVariant models achieve comparable accuracies to short-read methods with the additional benefit of…

Read More »

Friday, February 5, 2021

Webinar: Sequencing 101 – How long-read sequencing improves access to genetic information

In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.

Read More »

Friday, February 5, 2021

Webinar: Increasing solve rates for rare and Mendelian diseases with long-read sequencing

Dr. Wenger gives attendees an update on PacBio’s long-read sequencing and variant detection capabilities on the Sequel II System and shares recommendations on how to design your own study using HiFi reads. Then, Dr. Sund from Cincinnati Children’s Hospital Medical Center describes how she has used long-read sequencing to solve rare neurological diseases involving complex structural rearrangements that were previously unsolved with standard methods.

Read More »

1 2 3 4

Subscribe for blog updates:

Archives