April 21, 2020  |  

Whole-Genome Analysis of Halomonas sp. Soap Lake #7 Reveals It Possesses Putative Mrp Antiporter Operon Groups 1 and 2.

The genus Halomonas possesses bacteria that are halophilic or halotolerant and exhibit a wide range of pH tolerance. The genome of Halomonas sp. Soap Lake #7 was sequenced to provide a better understanding of the mechanisms for salt and pH tolerance in this genus. The bacterium’s genome was found to possess two complete multiple resistance and pH antiporter systems, Group 1 and Group 2. This is the first report of both multiple resistance and pH antiporter Groups 1 and 2 in the genome of a haloalkaliphilic bacterium. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

April 21, 2020  |  

Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium.

Understanding the molecular mechanisms of azo dye decolorization is important for the development of effective bioremediation for textile-colored wastewater. A halophilic bacterium Halomonas sp. strain GT was isolated, which could degrade the azo dye Acid Brilliant Scarlet GR at 10% NaCl. The complete genome sequence of this strain was obtained using the PacBio RS II platform. Genome annotation revealed that four proteins are related to decolorization of azo dyes, such as azoreductase, laccases, benzene 1,2-dioxygenase, and catechol 1,2-dioxygenase. The putative azoreductase gene of Halomonas sp. strain GT responsible for the decolorization of azo dye in high salt environment was isolated. Phylogenetic tree analysis showed that the azoG (azoreductase gene of Halomonas sp. strain GT) and its homologs constituted a new branch of the NADH depending azoreductases, with all the homologous sequence of the protein from halophilic bacteria. At high NaCl concentrations, azoreductase gene expression and azoreductase activity were restrained in Halomonas sp. strain GT, which resulted in low a decolorization rate. Copyright © 2018. Published by Elsevier B.V.

April 21, 2020  |  

Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential.

A halophilic Gram-negative eubacterium was isolated from the Iroise Sea and identified as an efficient producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions which sometimes can be constraining for marine strains. This versatility could be of great interest for biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes involved in PHA production and stress tolerance. This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a comparison was made with metabolisms of relative species. Genes annotation highlighted the presence of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid metabolisms were also identified which provided helpful insights into both a better knowledge of the intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be exploited for industrial applications such as PHA production.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.